
Towards Language-Conditioned Observation Models
for Visual Object Search

Thao Nguyen, Vladislav Hrosinkov, Eric Rosen, Stefanie Tellex
{thaonguyen, vladislav hrosinkov, eric rosen}@brown.edu, stefie10@cs.brown.edu

Abstract—Object search is a challenging task because when a
human communicates complex language descriptions (e.g., “the
red cup on the table”), the robot must perceive the described
object as well as handle noisy observations to plan search actions
effectively. Previous works map language descriptions to a set
of fixed object detectors with predetermined noise models, but
these approaches are challenging to scale as new detectors need
to be made for each object and complex object attributes may
affect the sensor noise of the associated observation model. In
this work, we bridge the gap in realistic object search by posing
the search problem as a partially observable Markov decision
process (POMDP) where the object detector and visual sensor
noise in the observation model is determined by a single Deep
Neural Network conditioned on complex language descriptions.
Our method assumes that the object detector outputs detection
accuracy over RGB images, which we incorporate into our
language-conditioned observation model (LCOM) to represent
dynamically changing sensor noise. With an LCOM, any lan-
guage description of an object can be used to generate an
appropriate object detector and noise model, and training an
LCOM only requires supervised image-caption datasets which
are readily available. We empirically evaluate our method by
comparing against a state-of-the-art object search algorithm in
simulation, and demonstrate that planning with our observation
model yields a significantly higher average task completion rate
(from 0.62 to 0.76), more efficient and quicker object search
resulting in a higher average SPL (from 0.53 to 0.65) than
with a fixed-noise model. We also demonstrate our method on
a Boston Dynamics Spot robot, enabling it to handle complex
natural language object descriptions and efficiently find objects
in a room-scale environment without the use of fiducial markers.

I. INTRODUCTION

Object search is a challenging task because the robot has
incomplete knowledge of the environment, limited field of
view, and noisy sensors. When asked to find an object in
an environment, the robot must first infer the desired object
from the language instruction, then efficiently move around
the space to look for the object. Most images captured by
the robot in this process will not contain the target object.
Furthermore, even when the object is in the robot’s field of
view, it might not be detected due to occlusion, sensor noise,
the viewing angle, the object’s distance from the robot, etc.

There have been many previous works on improving the
efficiency and accuracy of robot object search by using prior
semantic knowledge [11], active visual search [3, 4], object
manipulation [13, 22, 5], and belief factorization for multi-
object search [20, 24]. However, these works have often
assumed that the target objects are specified with very simple
language (such as “cup” for the object’s class), and thus
cannot fully utilize more complex language descriptions (such

(a) A scene with the target ob-
ject segmented out (“the sink on
the left”).

(b) Most images captured by the
robot do not contain the target
object.

Fig. 1: Our system takes in a language description of the target
object and constructs a detector for that object. It addresses the
problem that most images captured by a robot when searching
for an object do not contain that object by incorporating a
modified training process and using the detector’s confidence
score in a POMDP model for object search.

as “red cup”) to avoid exhaustively searching over similar
object instances in the environment. Furthermore, the robot
is usually assumed to have a fixed-accuracy object detector
[11, 4, 20, 24] or that detection noise only comes from
occlusion [13, 22]. This is challenging to scale as new occlu-
sion models and detectors have to be made for new objects.
Additionally, object detectors’ accuracies are often dynamic as
they depend on many factors: viewing angle, occlusion, etc.
Modeling the detector as having a fixed accuracy prevents
the robot from dynamically reasoning about observations it
gets from the detector. This means the robot is unable to
decide to gather more data instead of trusting a low-confidence
detection, or trust a high-confidence detection more easily,
leading to reduced object search success rates and efficiencies.

The computer vision community has developed deep learn-
ing models that can detect objects with high accuracy [7, 18],
even given complex language descriptions of objects such as
“red cup on the left” [8]. However, these models assume that
the object is in the input image and must be localized within
that image. In contrast, when searching for objects, most
images captured by the robot will not contain the object being
searched for (Figure 1). Moreover, models for object search do
not incorporate detection confidence scores into their search
process, which can inform the robot to change its viewpoint
to obtain additional data for more accurate detection.

Our work addresses these problems by embedding a deep-
learned object detector within an Object-Oriented Partially
Observable Markov Decision Process (OO-POMDP) [20]. We
modify the detector from Hu et al. [8] to handle the large
number of images which do not contain the object using a
different training process. Additionally, we incorporate the

confidence scores from the detector into the POMDP belief
updates, enabling the robot to reason dynamically. This allows
us to handle complex language descriptions and search for
objects more efficiently in household-sized environments. Our
contributions in this paper are five-fold:

1) An experimental analysis on confidence scores from
language-conditioned visual segmentation models as a
proxy for different sources of observation noise.

2) A novel class of visual observation models whose de-
tections and hyperparameters are conditioned on natural
language, which we term Language-Conditioned Obser-
vation Models (LCOMs).

3) A novel decision making framework for object search
that leverages LCOMs to use natural language when
accounting for scene-dependent detection accuracy when
estimating state uncertainty for planning.

4) A set of experiments in simulation that compare the
performance of planning models using LCOMs against
fixed-noise sensor models on the object search task.

5) A demonstration of our method on a Spot robot [1],
which enables Spot to handle complex natural language
object descriptions and efficiently find objects in a room-
scale environment without any fiducial markers.

II. RELATED WORK

Related work for robot object search generally falls into
one of two categories: model-based and end-to-end policy
learning. Model-based approaches separate state estimation
and planning to leverage probabilistic inference, whereas
model-free approaches leverage deep neural networks to learn
a policy end-to-end.

There is a collection of works that employ deep learning
for end-to-end visual and object search [6, 21, 16]. Our work
differs from these in that we perform model-based planning to
leverage our known dynamics models. Model-based planning
has the potential to generalize better to new environments and
systems with less training data because we encode a model
of the robot’s sensor and actuation capabilities, and only use
deep learning for the visual processing.

Partially observable Markov decision processes (POMDPs)
[9] are a framework for sequential decision making under
uncertainty frequently used for object search problems. Li
et al. [13] and Xiao et al. [22] treat object search in clutter as
a POMDP that can be efficiently solved by using approximate
online planners and constraining planning samples based on
spatial constraints and conditioning action selection on the
current belief state, respectively. However, their observation
models are only based on occlusion statistics calculated from
object region overlap. Our proposed observation model can
instead account for errors not solely derived from occlusion by
conditioning on complex language. Danielczuk et al. [5] train
a deep learning model to segment colored masks for objects in
a pile from RGB-D images and score each mask on whether it
belongs to the target object. They, however, use a fixed object
priority policy for action selection and assume a fixed sensor

pose, while we focus on planning how to explore a space for
the purpose of object search by leveraging an active sensor.

Aydemir et al. [4] frame the object search problem as active
visual search and calculate candidate viewpoints based on
a probability distribution over the search region, which is
informed by prior correspondence knowledge between objects
and semantic room categories. However, they do not account
for sensor error and assume the object to be detected if it is in
the robot’s field of view. Atanasov et al. [3] plan a sequence
of sensor views to effectively estimate an object’s orientation.
Similar to our work, their observation model can account for
pose-dependent sensor error that is not derived from occlusion.
They, in contrast, assume the object’s position is known and
only allow restrictive sensor motions (the camera must always
face the object), which is too limited for our object search
setting where the robot might not even start facing the object.
Wandzel et al. [20] introduce Object-Oriented POMDP (OO-
POMDP) to factorize the robot’s belief into independent object
distributions, enabling the size of the belief to scale linearly in
the number of objects, and employ it for efficient multi-object
search. Zheng et al. [24] extend OO-POMDP for efficient
multi-object search in 3D space. Both these works assume
simple language inputs and fixed-accuracy object detectors.
Our work builds on these frameworks but explores using a
deep-learned detector that takes in a natural language phrase
and camera image to create an object detector.

The computer vision community has developed deep learn-
ing models trained on object segmentation datasets that can
detect objects with high accuracy [7, 18, 8]. The models
self-supervisedly learned to output confidence scores with
their detection results. The learned confidence scores reflect
the models’ detection accuracy, which dynamically changes
depending on the input images. We build on the model
developed by Hu et al. [8] for our object detector because
it is trained to handle referring expressions—complex noun
phrases to describe objects.

III. APPROACH

Our approach models multi-object search as an OO-POMDP
with an observation model corresponding to a deep-learned
object detector. This approach enables us to use OO-POMCP
to find policies for the robot to enable it to efficiently find
objects with the deep-learned detector.

A. Planning Framework

To model the multi-object search (MOS) problem, we
assume access to an occupancy-grid map, M , which is an
m× n grid that marks locations as either empty or occupied,
and is used for defining the space of positions and directions in
the environment. We assume an object is completely contained
within one of the grid cells in the map. Our main contri-
bution is the novel language-conditioned observation model
(LCOM), which modifies the observation model dynamically
based on the results of the deep-learned object detector,
and which we describe in detail in Section III-B. Formally,
we define the MOS OO-POMDP problem as a 10 tuple:
< Obj, L, S,A, T,R, γ,Ω, hL, O >. The tuple components
are described in detail in Section B in the Appendix.

Fig. 2: LCOM Overview: The robot receives an RGB-D
image and language description of the object, which go into
hL to produce language-conditioned confidence scores for our
fan-shaped detected observations. The confidence scores are
then transformed by gL into a noise model for the detected
observations, which is used to update the belief about the
object’s location via state estimation. Ovals are algorithms,
and rectangles are data. The shaded oval is learned.

B. Language-Conditioned Observation Model (LCOM)

Figure 2 presents an overview of LCOM. When we receive
an RGB-D sensor observation, ω, we can transform it into our
fan-shaped sensor observation zs and associated confidence
scores cs by using the language-conditioned observation map-
per hL(ω) = zs, cs. LCOMs are independent of any particular
instantiation of hL as long as they satisfy the functional
definition described in Section B, and for the rest of this
section’s discussion we treat hL as a black box function. In our
experiments, we instantiate hL using a deep neural network.

Since we model the multi-object search as an OO-POMDP,
we only discuss zis and cis when considering the state of object
i. For object i, we treat zsi as having a probability of being
drawn from three different events: a true positive (Ai), a false
positive (Bi), or a true or false negative (Ci). More formally,
let Ai be when zsi is from object i and zsi ∈ V , Bi be when
zsi ∈ V but zsi comes from other sources besides object i, and
Ci be when zsi = NULL. For the Find(X,Y) action, we
assume a perfect sensor model where observations resulting
from it are always true and give perfect information about the
potential object at location (X,Y) (i.e., observations resulting
from Find are not language-conditioned). In simulation this
is reflected by knowing the ground truth state, and in real-life
this can be reflected by asking a human to verify the selected
location. For the Look action, we parameterize the probability
of each of the three events and the noise model for the
location of the object conditioned on that event based on the
associated confidence score csi . Therefore, we can decompose
the observation model p(zsi |s, a) into:

p(zsi |s, a, csi) =
∑

ei∈{Ai,Bi,Ci}

p(zsi |ei, s, a, csi)p(ei|s, a, csi)

(1)

If event Ai is selected, the observation is distributed nor-
mally with µi being object i’s position and with a dynamic
variance σ that depends on csi based on gL: p(zsi |ei, s, a, csi) =
Norm(zsi |oi, σ). If event Bi is selected, the observation is dis-
tributed uniformly within the sensor region: p(zsi |ei, s, a, csi) =
1
|Z| . If event Ci is selected, the null observation has a
nearly 1 probability while any other observation has nearly
0 probability, which we implement with additive smoothing.
For p(ei|s, a, csi), we use gL to map ci to a true positive
rate (which implicitly defines the false positive rates), which
determines the probability of event Ai, Bi, and Ci being
drawn. To summarize, gL maps confidence scores to both
a) variances for the normally-distributed probability of the
objects position during true positive/negative events, and b)
the probability of a true/false positive event, which determines
the probability of event Ai, Bi, Ci from being drawn. In both
cases, we map the continuous value of csi to a discrete range
of hyper-parameter values that represent high-confidence and
low-confidence parameters for each setting respectively.

We note that LCOMs depend on visual input to detect
potential objects in the image and report confidence scores that
are used to define the sensor noise in the observation model.
During state estimation with real-robot hardware, acquiring
visual input is straightforwardly done by capturing images
with the robot’s RGB cameras. During planning, however,
acquiring visual input may be challenging because it requires
synthesizing novel images based on the pose of the robot
and potential location of the target object. For this reason,
when performing visual object search in our experiments,
we only use LCOMs for updating the agent’s belief during
state estimation, and use a fixed observation model similar
to Wandzel et al. [20] during planning based only on the 2D
geometries of the known occupancy-grid map M , and we leave
investigation of different 3D scene representations that capture
appearance to enable planning with LCOMs to future work.

C. Object Detector

We build upon the segmentation model developed by Hu
et al. [8] for our object detector as it can handle referring
expressions—complex noun phrases to describe objects. The
model takes in a referring expression and RGB image and
outputs scores for every image pixel, which are then binarized
and returned as the predicted mask for the image region
described by the language. However, the original model by
Hu et al. [8] was trained on the ReferIt dataset [10] which
mostly contains outdoor images, whereas we are interested in
detecting indoor household objects. We, therefore, additionally
trained the model on the RefCOCO dataset [10] which con-
tains referring expression annotations for segmented objects
from the COCO dataset of common objects in context [14].

The original model was primarily trained on positive ex-
amples, meaning that most images contained the target object,
and the model only had to localize the object within the image.
In contrast, when used for object search, most images fed to
the model will not contain the desired object. Thus filtering
a large number of true negatives without missing the rare

Fig. 3: Simulation Results: Average task completion rates and
success-weighted path lengths for a simulated perfect sensor,
and static and dynamic observation models with the deep-
learned sensor.

true positive is key to good performance in search tasks. We
augmented the model’s training data with negative examples
where the object described by the referring expression does
not appear in the image, and thus the model should return an
empty segmentation mask. This is to adapt the model to our
object search setting where the desired object is usually not
in the robot’s field of view. Trained on the augmented data,
our model achieved a true negative rate of 0.918, a significant
improvement on the original model’s 0.124.

We now describe our instantiation of hL for our experiments
based on the deep-learned segmentation model. The model
takes in the RGB image and language L and outputs a
segmentation mask—a binary image which identifies pixels
that are part of the target object described by L. If the mask
is empty, the model did not detect the object and zsi = NULL.
Otherwise, we take the average of the depth value at each pixel
in the mask and the coordinates of the mask’s center point
and project it into a location (X,Y) in the robot’s fan-shaped
sensing region (i.e., fan-shaped projection) and return (X,Y)
as zsi . We also retain the model’s original output score for
each pixel, which we average over all pixels in the mask and
use as the confidence value csi for the detection.

IV. EXPERIMENTS AND RESULTS

Our aim is to test the hypothesis that language-conditioned
observation models combined with object-oriented POMDPs
can increase the speed and accuracy of a robot’s ability of
finding objects in complex environments. We evaluated our
system both in a wide variety of environments in simulation,
as well as on a real physical robot.

A. Simulation Results

We use scenes from the AI2-THOR simulator [12] to
conduct our experiments. The experimental setup is further
described in Section D in the Appendix. Results appear in
Figure 3. We present both the task completion rate—the
percentage of time the robot successfully finds the object, and
success weighted by (normalized inverse) path length (SPL)
[2]. We tested each different version of our model 3 times and
report the average and standard error in their performances.
We present results for fixed optimal values of the sensor
parameters computed from the scenes in our dataset. Our deep-
learned sensor achieved a true positive rate (TPR) of 0.581,

true negative rate (TNR) of 0.918, and covariance of 0.827 for
the normal distribution over the desired object’s position. As
done in Wandzel et al. [20], we set the observation model’s
σ and ϵ values to 0.827 and 0.581, respectively. However,
we realized the benefit of also representing our sensor’s true
negative rate and thus modified their equation to maintain
separate epsilon values for the positive and negative detection
cases (ϵTPR and ϵTNR, respectively), and set ϵTNR to 0.918.
This lead to a slightly improved task completion rate and SPL.

We then show results with values for each of the three
observation model parameters set dynamically (based on the
deep-learned detector’s output confidence score), and the per-
formance with all three parameters set dynamically. Lastly,
we show the performance with a simulated noisy “perfect”
sensor whose noise model perfectly matches the model used
for planning by the POMDP. As expected, the performance
for the perfect sensor is the best. This is because the sensor
observations are being generated from ground truth with exact
noise models. This provides an upper bound on our system’s
performance, and also indicates that if we used a more realistic
sensor model, our system has the potential to perform even
better. In particular, the perfect sensor will sample multiple im-
ages with the same viewpoint independently, which is not true
for the deep-learned detector. All versions of our system with
a dynamic observation model outperform the static versions,
with a slight, insignificant benefit for the all-three version. In
addition, all but one of the dynamic versions’ improvements
are statistically significant because the standard error bars do
not overlap with those of the static versions. Overall, these
results demonstrate that using a dynamic observation model
significantly improves the ability of our system to find objects
quickly and efficiently in realistic environments.

B. Real-World Demonstration

We provide a real-world demonstration on the Boston
Dynamics Spot robot1. The robot takes as input a discretized
map of the environment and a typed natural language phrase
describing the desired object. RGB and Depth images are
taken from two separate cameras in the robot’s hand, and pixel
correspondence between the two images is computed using the
intrinsic and extrinsic matrices of both cameras. Spot moves
through the environment by taking steps that are 0.6 meters
in length, and all decisions are driven by the OO-POMDP
until it finds the object. Scenes from our demonstration and
the corresponding belief updates from using LCOMs with
real robot hardware are shown in Figure 5 in the Appendix.
The robot was asked to find “the green mug on the left”
and successfully did so in a small number of actions. This
demonstration shows our system runs on a real-world platform
in a realistically sized environment, computes a policy and
observations efficiently, and enables a real robot to efficiently
search for and find objects.

1The video is available at https://youtu.be/3Z4XQUQXCsY

https://youtu.be/3Z4XQUQXCsY

REFERENCES

[1] Spot® - The Agile Mobile Robot. URL https://www.
bostondynamics.com/products/spot.

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,
Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun,
Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Mano-
lis Savva, et al. On Evaluation of Embodied Navigation
Agents. arXiv preprint arXiv:1807.06757, 2018.

[3] Nikolay Atanasov, Bharath Sankaran, Jerome Le Ny,
George J Pappas, and Kostas Daniilidis. Nonmyopic
View Planning for Active Object Detection. arXiv
preprint arXiv:1309.5401, 2013.

[4] Alper Aydemir, Andrzej Pronobis, Moritz Göbelbecker,
and Patric Jensfelt. Active Visual Object Search in Un-
known Environments Using Uncertain Semantics. IEEE
Transactions on Robotics, 29(4):986–1002, 2013.

[5] Michael Danielczuk, Andrey Kurenkov, Ashwin Bal-
akrishna, Matthew Matl, David Wang, Roberto Martı́n-
Martı́n, Animesh Garg, Silvio Savarese, and Ken Gold-
berg. Mechanical Search: Multi-Step Retrieval of a
Target Object Occluded by Clutter. In Proceedings of the
International Conference on Robotics and Automation,
pages 1614–1621. IEEE, 2019.

[6] Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, An-
thony Francis, Lydia Tapia, Marek Fiser, and James
Davidson. PRM-RL: Long-range Robotic Naviga-
tion Tasks by Combining Reinforcement Learning and
Sampling-based Planning. In Proceedings of the Inter-
national Conference on Robotics and Automation, pages
5113–5120. IEEE, 2018.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick. Mask R-CNN. In Proceedings of the IEEE
International Conference on Computer Vision, pages
2961–2969, 2017.

[8] Ronghang Hu, Marcus Rohrbach, and Trevor Darrell.
Segmentation from Natural Language Expressions. In
Proceedings of the European Conference on Computer
Vision, pages 108–124. Springer, 2016.

[9] Leslie Pack Kaelbling, Michael L Littman, and An-
thony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence,
101(1-2):99–134, 1998.

[10] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and
Tamara Berg. ReferItGame: Referring to Objects in
Photographs of Natural Scenes. In Proceedings of the
Conference on Empirical Methods in Natural Language
Processing, pages 787–798, 2014.

[11] Thomas Kollar and Nicholas Roy. Utilizing object-object
and object-scene context when planning to find things. In
Proceedings of the International Conference on Robotics
and Automation, pages 2168–2173. IEEE, 2009.

[12] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Vander-
Bilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke
Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An
Interactive 3D Environment for Visual AI. arXiv, 2017.

[13] Jue Kun Li, David Hsu, and Wee Sun Lee. Act to See
and See to Act: POMDP Planning for Objects Search in
Clutter. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
5701–5707. IEEE, 2016.

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft COCO: Common Objects
in Context. In Proceedings of the European Conference
on Computer Vision, pages 740–755. Springer, 2014.

[15] Omid Madani, Steve Hanks, and Anne Condon. On
the Undecidability of Probabilistic Planning and Infinite-
Horizon Partially Observable Markov Decision Prob-
lems. In AAAI/IAAI, pages 541–548, 1999.

[16] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and
Goldie Nejat. Deep Reinforcement Learning Robot for
Search and Rescue Applications: Exploration in Un-
known Cluttered Environments. IEEE Robotics and
Automation Letters, 4(2):610–617, 2019.

[17] A Alan B Pritsker. Introduction to Simulation and SLAM
II. Halsted Press, 1984.

[18] Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You Only Look Once: Unified, Real-Time
Object Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 779–
788, 2016.

[19] David Silver and Joel Veness. Monte-Carlo Planning
in Large POMDPs. In Advances in Neural Information
Processing Systems, pages 2164–2172, 2010.

[20] Arthur Wandzel, Yoonseon Oh, Michael Fishman, Nis-
hanth Kumar, Wong Lawson LS, and Stefanie Tellex.
Multi-Object Search using Object-Oriented POMDPs. In
Proceedings of the International Conference on Robotics
and Automation, pages 7194–7200. IEEE, 2019.

[21] Mitchell Wortsman, Kiana Ehsani, Mohammad Raste-
gari, Ali Farhadi, and Roozbeh Mottaghi. Learning to
Learn How to Learn: Self-Adaptive Visual Navigation
Using Meta-Learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 6750–6759, 2019.

[22] Yuchen Xiao, Sammie Katt, Andreas ten Pas, Shengjian
Chen, and Christopher Amato. Online Planning for
Target Object Search in Clutter under Partial Observ-
ability. In Proceedings of the International Conference
on Robotics and Automation, pages 8241–8247. IEEE,
2019.

[23] Kaiyu Zheng and Stefanie Tellex. pomdp py: A Frame-
work to Build and Solve POMDP Problems. arXiv
preprint arXiv:2004.10099, 2020.

[24] Kaiyu Zheng, Yoonchang Sung, George Konidaris,
and Stefanie Tellex. Multi-Resolution POMDP Plan-
ning for Multi-Object Search in 3D. arXiv preprint
arXiv:2005.02878, 2020.

[25] Kaiyu Zheng, Yoonchang Sung, George Konidaris, and
Stefanie Tellex. Multi-resolution POMDP planning for
multi-object search in 3D. In IEEE/RSJ International

https://www.bostondynamics.com/products/spot
https://www.bostondynamics.com/products/spot

Conference on Intelligent Robots and Systems, 2021.
Robocup Best Paper.

APPENDIX

A. Preliminaries

POMDPs are a framework for modeling sequential deci-
sion making problems where the environment is not fully
observable. Formally, a POMDP can be defined as a tuple
< S,A,Ω, T,O,R >, where S,A,Ω denote the state, action,
and observation spaces of the problem, respectively. After the
agent takes action a ∈ A, the environment state transitions
from s ∈ S to s′ ∈ S following the transitional probability
distribution T (s, a, s′) = p(s′|s, a). As a result of its action
and the state transition, the agent receives an observation
z ∈ Ω following the observational probability distribution
O(s′, a, z) = p(z|s′, a), and a real-valued reward R(s, a).

Because the environment is partially observable, the agent
does not have full knowledge of the current state s and instead
maintains a belief state b which is a probability distribution
over the states in S. The agent starts with an initial belief b0
and updates its belief after taking an action and receiving an
observation:

b′(s′) = O(s′, a, z)
∑
s∈S

T (s, a, s′)b(s) (2)

A policy π is a mapping from belief states to actions. The
agent’s task is to find a policy that maximizes the expected
sum of discounted rewards given an initial belief:

V π(b0) = E

[∞∑
t=0

γtR(st, at)

∣∣∣∣at = π(bt)

]
(3)

where the discount factor γ determines the impact of future
rewards on current decision making.

POMDPs, however, are computationally intractable for ex-
act planning in large domains [15]. OO-POMDPs were intro-
duced by Wandzel et al. [20] to factor the state and observation
spaces in terms of objects: p(s′|s, a) =

∏
i p(s

′
i|s, a) and

p(z|s′, a) =
∏

i p(z
′
i|s, a), with 1 ≤ i ≤ n where n is the

number of objects. The belief is also factored b(s) =
∏

i bi(si)
and can be updated separately for each object. This allows the
belief space size to scale linearly instead of exponentially in
the number of objects. To leverage this computational gain,
Wandzel et al. [20] propose a variant of Partially Observable
Monte-Carlo Planning (POMCP) [19], which they term OO-
POMCP, where an exact belief update is calculated with the
factored state instead of approximating it by using a particle
representation that is updated based on rollouts from the Monte
Carlo tree search during planning.

B. Object Search Formulation

We define the MOS OO-POMDP problem as a 10 tuple:
< Obj, L, S,A, T,R, γ,Ω, hL, O >.

1) Obj: is a set of N objects that exist in the environment
(not including the robot). Each object oi ∈ Obj has a 2D
position attribute (xi, yi) = oi, representing its discrete

position in the occupancy-grid map M . One of these
objects, od ∈ Obj, is defined as the desired object and
is used to define the reward function.

2) L: is a string of words, representing the natural language
command given by the human, for example “The red
cup on the table.” L is only used to condition the visual
observation model and transform raw RGB-D images
into our fan-shaped sensor model. We defer more details
to Section III-B. In this work we assume L to be
given at the start of the interaction and remain constant
throughout the interaction, and defer handling dynamical
language to future work.

3) S: is a set of states, where each state s ∈ S is an
N + 1 dimensional vector (o1, ..., oN , r) = s, where
oi represents an instantiated 2D position for object i,
and r = (rx, ry, ro) is an instantiated 2D position and
discrete orientation (NORTH, EAST, SOUTH, WEST)
for the robot in the occupancy-grid map M . We assume
r is fully observable and the N object poses are only
partially observable, yielding a mixed-observable state.
This assumption is equivalent to assuming our robot is
equipped with a LIDAR sensor and has previously run
SLAM [17] and localized itself within that map.

4) A: is a set of actions the robot can execute to move
around the map, observe object locations, and declare
the desired objects as found. Specifically, we have three
types of parameterized actions:

a) Move(DIR): points the robot in direction DIR and
moves the robot one grid in that direction, with DIR
being either NORTH, EAST, SOUTH, or WEST.

b) Look: has the robot execute a look action from its
current position and orientation (rx, ry, ro).

c) Find(X,Y): has the robot attempt to find the
desired object od at grid cell (X,Y). If od is at
(X,Y), the action will mark the object as found
and terminate the episode.

5) T : is a deterministic transition function, where Move
actions transition the robot to different states by chang-
ing its position and orientation (rx, ry, ro). Find actions
can transition the robot to a terminal state after finding
the desired object.

6) R: is a reward function, where all Move actions re-
ceive −2 reward, Look receives a −1 reward, and
Find(X,Y) receives a 1000 reward when done at the
location of the desired object, (X,Y) == (xod , yod),
and −1000 otherwise.

7) γ: is the discount factor, which we set to 0.9
8) Ω: is the set of observations from our sensor, where

each ω ∈ Ω is a pair of RGB and depth images of size
300× 300 pixels.

9) hL: Ω → zs, cs is a language-conditioned observation-
mapping function that transforms raw RGB-D images
into the same fan-shaped sensor model as described
in [20] along with confidence scores for each object
detection. The discretized fan-shaped region V only

provides a limited field of view where observations of
the sensing region, zs, consist of |N | object-specific
observations zsi ∈ V ∪ {NULL}. If object i is not
detected by the sensor, zsi = NULL. Otherwise, zsi
is the location (X,Y) where object i is detected in
V . cs consist of all the |N | object-specific observation
confidence scores, csi , which are real values in the [0, 1]
range. csi represents the confidence value of observation
zsi on object i. We describe how hL is used for LCOMs
in Section III-B, and our particular instantiation of hL

for our experiments in Section III-C.
10) O: is the Language-Conditioned Observation Model

(LCOM), which assigns probabilities to observations zt
based on the current state st, action at, and natural lan-
guage command L. The Move actions always produce
the NULL observation, the Look action produces noisy
fan-shaped measurements conditioned on the language,
and the Find(X,Y) action produces an observation
that is NULL for every object in the sensing region
except for any potential object at the location (X,Y).
We discuss the observation model in more detail in the
following subsection.

C. Success weight by Path Length Metric (SPL)

SPL is calculated as:

1

N

N∑
i=1

Si
li

max(pi, li)

where N is the total number of tasks, li is the shortest path
from the agent to the goal for task i, pi is the path the agent
actually took for the task, and Si is a binary indicator of
success in the task. For our experiments, pi is the number
of actions the agent actually took to search for the object, and
li is the lowest number of actions needed to find the object.
If the agent achieves a higher task completion rate but took
more steps overall to find the objects, it will have a lower
increase in its SPL. We collected li by performing planning
with a perfect sensor with no noise.

D. Simulation Experiments

AI2-THOR consists of 120 near photo-realistic 3D scenes
spanning four different categories: kitchen, living room, bed-
room, and bathroom. We select a subset of 15 scenes along
with 30 target objects (for an average of 2 objects/scene) for
our experiments. Example images of the scenes used in our
experiments can be found in Figure 4. The average size of a
scene is 4× 4 meters, which we discretize into a 16× 16 cell
grid map with each cell being 0.25× 0.25 meters.

We use the OO-POMDP framework for multi-object search,
but for simplicity only tested the system on single-object
search tasks. We built upon the MOS OO-POMDP implemen-
tation by Zheng and Tellex [23] in the pomdp py library. We
modeled the OO-POMDP as having no prior knowledge of
the target object’s location; thus it had a uniform initial belief
state over all possible object locations. We used a planning
depth of 3, exploration constant of 10000, and gave the agent a

Fig. 4: Simulated Scenes: example images of the AI2-THOR
scenes used in our experiments. The scene categories are:
kitchen (top left), living room (top right), bedroom (bottom
left), and bathroom (bottom right).

maximum time of 10 minutes and 10 Find actions to complete
each object search task. We generated simple natural language
descriptions of the objects in our experiments as input to the
agent.

E. Real-World Demonstration

Fig. 5: Real Robot Demonstration: sample images from our
real robot experiments with the Spot using LCOMs to find an
object. Full video footage of the robot executing the task, the
incoming sensor data, and the LCOM outputs is available at
https://youtu.be/3Z4XQUQXCsY. top left: the robot is turned
on and tasked with finding “the green mug on the left.”
top right: the robot’s initial belief about the target object’s
location, which is uniform. bottom left: the robot moves and
looks at a part of the room where the object is not located,
and updates its belief that the object is most likely somewhere
else. bottom right: the robot moves and looks where the object
is actually located, and after updating its belief has maximum
likelihood estimate at the target object’s true location.

F. Conclusion

Our contribution is a novel observation model that makes
use of the detector’s confidence score to better model the
detection accuracy. This enables us to perform object search
using a real object detector in realistic environments. Our
system can also handle complex language descriptions of

https://youtu.be/3Z4XQUQXCsY

objects. In addition, our method can be easily adapted to
new environments without having to relearn parameters for
the observation model.

Our model only considers 2D space. In future work, we
plan to extend to 3D models, building on Zheng et al. [25] to
model the 3D structure of objects. This extension will enable
the robot to reason about different 3D viewpoints as well as
predicting the structure of a partially observed object in order
to gather more views to identify and localize it.

Additionally, our model does not have the ability to reason
about the likelihood of different views of the same object
leading to improved performance at detecting/localizing that
object. Our observation model as implemented assumes that
each observation is independent, so that if the robot observes
the same scene from the same viewpoint, it will become more
and more certain whether the object is present or not. However,
in practice, when viewing the same or similar image from
the same viewpoint, a deep-learned detector will give the
same results; the observations are not independent samples. In
the future, we could address this problem by creating a new
observation model based on inverse graphics and an expected
3D model of the object appearance, enabling the robot to
predict the next best view to maximally reduce its uncertainty
about the object’s location.

Overall we see object search as a central problem for
human-robot interaction, as finding, localizing, and then grasp-
ing an object is a first step for almost anything a person
wants the robot to do in the physical world. Embedding object
search as a sub-component of a more sophisticated dialog
system can enable the robot to engage in collaborative dialog
with a human partner to interpret complex natural language
commands, find and manipulate objects being referenced, and
fluidly collaborate with a person to meet their needs.

G. Acknowledgments

The authors would like to thank Nick DeMarinis for all
his support and help. This work was supported by NSF under
grant awards IIS-1652561 and CNS-2038897, AFOSR under
grant award FA9550-21-1-0214, and Echo Labs.

	I Introduction
	II Related Work
	III Approach
	III-A Planning Framework
	III-B Language-Conditioned Observation Model (LCOM)
	III-C Object Detector

	IV Experiments and Results
	IV-A Simulation Results
	IV-B Real-World Demonstration

	Appendix
	A Preliminaries
	B Object Search Formulation
	C Success weight by Path Length Metric (SPL)
	D Simulation Experiments
	E Real-World Demonstration
	F Conclusion
	G Acknowledgments

