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Choosing one of Several Possible Algorithms
In most of CS105, we've been happy to just get one answer to a problem.
    But, sometimes we think of several algorithms, or ways to program an algorithm.

How do we choose? Compare the three things we want from our core software:
● Correctness … for now, this is a yes-or-no question: we want "yes, it's correct"

○ We'll revisit the question "how do you know it's correct?"
○ Upper-level CS explores things like approximation algorithms, "correctness" can be subtle.

● Clarity … is it possible to write this algorithm in a way that's easily understood?
○ We usually measure this informally, by asking peers who have broad training with many idioms

● Efficiency … does the code use no more resources than needed?
○ How do we even measure this?

● (Note: for overall software system, User Interface can be just as important!)



Measuring Efficiency
What does efficiency mean? We want to ensure that running code minimizes...
● time taken
● frustration created for the user
● energy taken
● carbon footprint

It turns out that the same techniques can be used to understand each/all of these.
    Time is the easiest to measure accurately, often the focus of first-year courses.

So … what does it mean to measure "time taken by an algorithm"?



Time Taken by an Algorithm, Idea #1: Measure Time
Python has ways to measure the time used by a program.
    (Python time module)

So, can we just use that to measure the time, and give our answer in seconds?
● The code doesn't take any time when it's just sitting there, we need to run it.
● When we run it, we must choose input/parameters … these affect the time.
● We also pick a computer … that also affects the time
● So, trying to express our answer in seconds or milliseconds tells us about the 

execution of the code for that input, when run on that computer

We need a better idea...

https://docs.python.org/3/library/time.html


Time Taken by an Algorithm, Idea #2: Time Function
If we run code on different inputs, we may find the time taken varies predictably.

   Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code: 

def power1(base: float, exp: int) -> 
float:
  precondition(exp > 0)
  if exp == 1:
    return base
  else:
    return base*power1(base, exp-1)



Time Taken by an Algorithm, Idea #2: Time Function

Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code: 

def power2(base: float, exp: int) -> 
float:
  precondition(exp > 0)
  result: float = base
  n_exp: int = 1
  while n_exp < exp:
    result = result * base
    n_exp = n_exp+1
  return result



Time Taken by an Algorithm, Idea #2: Time Function

def power3(base: float, exp: int) -> float:
  precondition(exp > 0)
  if exp == 1:
    return base
  elif exp%2==0:   # if exp is _even_
    half_exp: int = exp//2
    base_to_half_exp: float = power3(base, half_exp)
    return base_to_half_exp * base_to_half_exp
  else:
    return base * power3(base, exp-1)  # this is still true, use it!

Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code: 



Things We Might Observe
As we run experiments, some things may have become evident
● speed varies with the amount of work we do (as we've discussed)
● speed also varies with the computer

○ often, computers are simply faster or slower than each other, same code is "best"
○ but, multi-core algorithms vary a lot more by computer design

● speed also varies with idiom (also language, language implementation)
○ function calls used to be very slow in Python, now, maybe not too bad?
○ finding a "slice" of an array or list may or may not involve a (slow) copying step
○ "tail recursion" is as fast as loops in some languages/implementations, slower in others
○ redundant recursive calls can be made fast in some research language implementations

Note: Python code usually needs to rely on built-in operations to be really fast,
e.g. try timing the built-in power or sort/sorted algorithm



Finding "Complexity Functions"

Form Hypothesis:
● Measure cost in terms of some maximally-run fixed-time basic operation

○ Warning: remember that some operations are not fixed-time, e.g. [ ] and + for Python lists!

● Return a tuple of (result, work-needed-for-it)

Check Hypothesis:
● analytically, i.e., write out postcondition for work-needed-for-it
● experimentally, i.e., run some tests, plot some curves

More about this on Tuesday



Summary
To create efficient software:

● Use built-in library routines unless there's a reason not to
○ e.g., unless you have some sort of special case that can be solved faster

● Find a high-efficiency algorithm
○ take CMSC 106 or 151, and 231 "Discrete Math", and then 340 "Analysis of Algorithms"
○ CMSC 105 fulfills the prerequisite for 106/151 and 231 (231 also relies on high-school algebra)

● Find a set of idioms and a language so that you can express it
○ clearly
○ correctly
○ with elements that your language can handle efficiently


