
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Choosing one of Several Possible Algorithms
In most of CS105, we've been happy to just get one answer to a problem.
 But, sometimes we think of several algorithms, or ways to program an algorithm.

How do we choose? Compare the three things we want from our core software:
● Correctness … for now, this is a yes-or-no question: we want "yes, it's correct"

○ We'll revisit the question "how do you know it's correct?"
○ Upper-level CS explores things like approximation algorithms, "correctness" can be subtle.

● Clarity … is it possible to write this algorithm in a way that's easily understood?
○ We usually measure this informally, by asking peers who have broad training with many idioms

● Efficiency … does the code use no more resources than needed?
○ How do we even measure this?

● (Note: for overall software system, User Interface can be just as important!)

Measuring Efficiency
What does efficiency mean? We want to ensure that running code minimizes...
● time taken
● frustration created for the user
● energy taken
● carbon footprint

It turns out that the same techniques can be used to understand each/all of these.
 Time is the easiest to measure accurately, often the focus of first-year courses.

So … what does it mean to measure "time taken by an algorithm"?

Time Taken by an Algorithm, Idea #1: Measure Time
Python has ways to measure the time used by a program.
 (Python time module)

So, can we just use that to measure the time, and give our answer in seconds?
● The code doesn't take any time when it's just sitting there, we need to run it.
● When we run it, we must choose input/parameters … these affect the time.
● We also pick a computer … that also affects the time
● So, trying to express our answer in seconds or milliseconds tells us about the

execution of the code for that input, when run on that computer

We need a better idea...

https://docs.python.org/3/library/time.html

Time Taken by an Algorithm, Idea #2: Time Function
If we run code on different inputs, we may find the time taken varies predictably.

 Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code:

def power1(base: float, exp: int) ->
float:
 precondition(exp > 0)
 if exp == 1:
 return base
 else:
 return base*power1(base, exp-1)

Time Taken by an Algorithm, Idea #2: Time Function

Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code:

def power2(base: float, exp: int) ->
float:
 precondition(exp > 0)
 result: float = base
 n_exp: int = 1
 while n_exp < exp:
 result = result * base
 n_exp = n_exp+1
 return result

Time Taken by an Algorithm, Idea #2: Time Function

def power3(base: float, exp: int) -> float:
 precondition(exp > 0)
 if exp == 1:
 return base
 elif exp%2==0: # if exp is _even_
 half_exp: int = exp//2
 base_to_half_exp: float = power3(base, half_exp)
 return base_to_half_exp * base_to_half_exp
 else:
 return base * power3(base, exp-1) # this is still true, use it!

Computational complexity: a formula giving work in terms of parameters

How would we expect the time needed to vary with b and e in the following code:

Things We Might Observe
As we run experiments, some things may have become evident
● speed varies with the amount of work we do (as we've discussed)
● speed also varies with the computer

○ often, computers are simply faster or slower than each other, same code is "best"
○ but, multi-core algorithms vary a lot more by computer design

● speed also varies with idiom (also language, language implementation)
○ function calls used to be very slow in Python, now, maybe not too bad?
○ finding a "slice" of an array or list may or may not involve a (slow) copying step
○ "tail recursion" is as fast as loops in some languages/implementations, slower in others
○ redundant recursive calls can be made fast in some research language implementations

Note: Python code usually needs to rely on built-in operations to be really fast,
e.g. try timing the built-in power or sort/sorted algorithm

Finding "Complexity Functions"

Form Hypothesis:
● Measure cost in terms of some maximally-run fixed-time basic operation

○ Warning: remember that some operations are not fixed-time, e.g. [] and + for Python lists!

● Return a tuple of (result, work-needed-for-it)

Check Hypothesis:
● analytically, i.e., write out postcondition for work-needed-for-it
● experimentally, i.e., run some tests, plot some curves

More about this on Tuesday

Summary
To create efficient software:

● Use built-in library routines unless there's a reason not to
○ e.g., unless you have some sort of special case that can be solved faster

● Find a high-efficiency algorithm
○ take CMSC 106 or 151, and 231 "Discrete Math", and then 340 "Analysis of Algorithms"
○ CMSC 105 fulfills the prerequisite for 106/151 and 231 (231 also relies on high-school algebra)

● Find a set of idioms and a language so that you can express it
○ clearly
○ correctly
○ with elements that your language can handle efficiently

