
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Python Lists, Part 1: they're like strings
In Python (or almost any other language), you can create a list
● A collection of any number of elements, typically of the same type
● Entered using [] around values (demo)
● Can identify each individual element using the [] subscript operation

○ similar to subscripting a string, but get 1 element, not a 1-element list, with 1 index (demo)

● Also share other string operations (demo)
○ + concatenates lists (or strings)
○ len gives the number of elements in the list (or string)
○ in checks whether an item is contained anywhere in a list (or string)

● (Note: other languages may require all to be the same type, use term "array")

Practice with Lists, Part 1: "Pure" Operations
Recall that the following operations work with list objects but don't change them:

● len (to find the length) and + (to concatenate) work as they do for strings
● "subscripting", i.e. [], like for strings except when only 1 subscript is given
● "in" looks for a value, not a sub-list, in a list

● X='mba'
● X='wombat'
● X=['phd', 'mba', 'md']

● X=['catapult', 'roomba', 'hat']
● X=[['bag'],['x','y'],['a','m','d']]

How can we extract/create the string "mba" from X, for each definition?

Python Lists, Part 2: unlike strings, they can change
Python lists differ from strings in several ways:
1. Describing the type is more challenging: from typing import List
2. You can change elements of a list

 bills: List[int] = [1, 5, 10, 20, 50, 100] # a list of numbers
 print(bills) # what does this do?
 print(bills[2]) # what does this do?
 bills[2] = 7 # We've replaced the $10 bill?
 print(bills) # now what happens?

it's fine to use the list "bills" in your Lab 4 (and 5), if you like :-)

Changing lists complicates the imperative approach!
Based on what we've seen so far, there are two sensible guesses to this:
Can you figure them both out?

 bills: List[int] = [1, 5, 10, 20, 50, 100] # a list of numbers
 print(bills[2:4]) # what does this do? contrast with print(bills)
 print(bills[2]) # how about this? contrast with print(bills[2:3])

 new_bills: List[int] = bills # change the currency
 new_bills[2] = 7
 print(new_bills) # no surprise if we see $7 but not $10 here
 print(bills) # What could happen here? Two good guesses…

Together, we'll figure out each, then check what Python does and why

Changing lists in the pure-functional approach
If the previous remains confusing, you can often just not change lists:

 bills: List[int] = [1, 5, 10, 20, 50, 100] # a list of numbers

 new_bills: List[int] = bills[:1]+[7]+bills[2:] # different list, with $7
 print(new_bills) # no surprise if we see $7 but not $10 here
 print(bills) # What could happen here? Only one thing makes sense
 new_bills[3]=17 # what happens here? what to do instead in pure func.?

Python “id” & “is”
 bills: List[int] = [1, 5, 10, 20, 50, 100]
 print(id(bills)) # gives the unique id of an object
 new_bills: List[int] = bills
 print(id(new_bills)) # can we guess the output?
 print(new_bills is bills) # checks if two objects are the same object

 bills2: List[int] = [1, 5, 10, 20, 50, 100]
 print(bills2 == bills) # can we guess the output?
 print(bills2 is bills) # what about for this line?

