
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Recap
● Dictionary Notional Machine

○ Program execution is "at" (or "in") a given line
○ Moving to the next line updates "dictionaries" of variables (one per "stack frame")
○ Like PyCharm debugger or pythontutor stepping operation

● Substitution Notional Machine
○ Copying or replacing elements of the program until you just have one answer
○ Like some PyCharm "refactor" options

■ refactoring is an important activity in programming; we treat it as a notional machine

● Controlling Abstraction level is important in both
○ E.g., "step over" vs. "step into"

Programming Paradigms
Substitution works most naturally for pure-functional code, i.e., made with
● Function definitions with returned values (rather than printed results)
● Operations such as +, *, -, <=, ==, etc. (for numbers, strings, whatever)
● Variable definitions providing a value when a variable is created
● Uses of "if" that select a value, e.g., to put in a variable or return

We'll stick to the Dictionary Notional Machine for imperative code, i.e., using
● Uses of "print" and "input"
● Changing the value of a variable, including inside an "if"
● Loops (special notation for certain patterns of recursion)

Imperative Programming and Destructive Assignment

First example: "destructive assignment" is hard to understand with the S.N.M.:

x: int = 1 # attach the name x to the value 1
y: int = x+1 # compute x+1, attach the name y to it
x = 100 # re-attach x, to 100 instead of 1
print(x) # can't substitute '1' for x here
print(y) # can't substitute x+1 for y here

(Note: we can fix this by re-labelling x's as x1 and x2 if we need to.)

Imperative Programming and Elseless If
"destructive assignment" or "early return" are easier to understand as steps

def abs(x: float)->float: def abs_v2(x: float)->float:
 if x<0: if x>0:
 x = 0-x return x
 return x y: int = 0-x
 return y

(Once again, we can use substitution if we re-label x's, but it's harder)

Imperative Programming and I/O (input and output)
What happens if we substitute the definition of first_name where it's used?

def get_name(greeting: str)->str:
 return input(greeting + ' ') # or print, then input()

def example()->None:
 first_name: str = get_name("Enter your first name")
 last_name: str = get_name("Enter your last name")
 print("your full name is", first_name + last_name)
 print("Nice to meet you", first_name)

Imperative Programming and While Loops
Two ways to keep trying until we get a result:

def get_name(greeting: str)->str: # recursive approach
 name: str = input(greeting + ' ')
 return name if name != '' else get_name(greeting)

def get_name_loop(greeting: str)->str: # use a while loop
 name: str = input(greeting + ' ')
 while name == '': # empty string, try again!
 name = input(greeting + ' ') # update name
 return name # returns the final result

Imperative Programming and For Loops
Two ways to look through every element of a collection (e.g., a string):

def print_letters(name: str)->None: # recursive approach
 if name != '':
 print(name[0], end=' ')
 print_letters(name[1:])

def print_letters_loop(name: str)->None: # use a for loop
 for letter in name:
 print(letter, end=' ')

Example/exercise
As a group, or in small groups, let's write earliest_letter using a loop

● this time, no recursion
● which loop should we use?
● how do we update variables each time we consider a new letter?

Which approach is better/easier? It depends on the problem!
 So, you need to be able to use both.

If time permits, more examples

