
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Recap/References for Basic Recursive Design
While working with Basic Recursive Design, remember:
● Five things to consider, from "Basic Recursive Design" section of FVtE book

○ most significant, usually: "find a simpler instance of the same problem"

● Steps for converting those five things to consider into Python
○ discussed in book, also done via example

● "Helpful, Competent Friend" metaphor
○ If you're asked for the earliest letter in an 8-letter word …
○ what smaller earliestLetter problem could you ask a helpful, competent friend
○ so that you could make your answer most easily?

Group discussion of "earliest_letter" problem.
 Also, discussion of power function, if requested.

Programming Idioms & Notional Machine
Now that we've covered the fundamentals of programming and design
● Will explore some choices and how we express our design (idioms)

○ Often there are several ways to program one idea
○ Later, we will discuss reasons to choose one option versus another

● A programming idiom often reflects a way of thinking about computation
○ This abstract understanding of computation is referred to as a notional machine
○ A collection of related idioms that work together are referred to as a programming

paradigm

The "Dictionary Notional Machine" for 1 function
● We can think of the computer as running a single function as follows:

○ make an arrow from each parameter name to the value of the argument passed
○ move through the body of the function, a line at a time (based on "if", of course)
○ each time we see an "=", adjust the set of name/value associations

● This can be animated by using:
○ the PyCharm "debug" view

■ Doesn't interact well with doctest, so use AFileForDebugging.py
○ pythontutor.com

■ Doesn't work well with doctest and types, just omit those

The "Dictionary Notional Machine" for function calls
● Each call to a function gets its own dictionary
● Sometimes we only need to think about one thing at a time

○ this is what the debugger shows us
○ sometimes this is enough to understand a problem
○ technical term: the "function-call stack" of "frames" (dictionaries) of current calculations

● Sometimes we need the "big picture", interactions between steps
○ The pycharm debugger helps us see all functions currently running (the "call stack")
○ A "function-call tree" shows all calculations from the whole run of the program
○ Neither tool shows the whole call tree

Tools and abstraction
Sometimes the "big picture" is too much, but there's a lot going on
● As with programming, abstraction is the answer:

○ In pycharm debugger, use "step over" to see the entire result of a function call
○ If the result of that function isn't right, debug it first
○ Once a function is debugged, just use "step over"
○ For a recursive function, step over simpler instances

■ E.g., debugging power(3, 5) without watching details of power(3, 4)

● This approach works best if we can limit interactions among functions
○ So far, functions interact mostly with parameters and return values

■ These are known as "pure functions"

The "Substitution Notional Machine"
● Within a function, just substitute variable values for names, in the text

○ E.g., for power(5, 3), replace base with 5, and exp with 3, in the body
○ Only straightforward for pure functions with unchanging variables

● As with the Dictionary Notional Machine
○ Simple things are simple
○ Looking at all the detail is often too confusing
○ Abstraction is the answer, skip over sub-function details

● Important differences from the Dictionary Notional Machine
○ We can chose the order, or even substitute expressions without filling in all the values
○ For trusted code, we can substitute the postcondition expression (providing abstraction)
○ Together, these can help us reason about general properties, check for consistency

