
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Recursion
A function can not only call other functions, it can (sometimes) call itself!
● If you're not careful, this is circular reasoning

○ like if circle_overlap and circle_overlap_two_figures both just call the other
■ then, no function is actually doing any of the work!

● Normally, a function should call on some simpler function, e.g.,
○ cube_x could call on square_x
○ fourth_power_x could call on cube_x, fifth_power_x could call on fourth_power_x, etc.
○ … no problem, right? That's top-down design … each function does a bit of the work!

● A function can call on itself for a simpler instance of the problem, e.g.,
○ power(x, 3) could call on power(x, 2)
○ power(x, 4) could call on power(x, 3)
○ … consider this as an example of design-by-cases, with each exponent at case!
○ group exercise: write this code, try it out, or pythontutor, for exponents 2 through 5 (or

more)

Recursion (group exercise)
Since a function can not only call other functions, it can (sometimes) call itself…
● Edit the power function you wrote before, with design-by-cases for

○ power(x, 3) could call on power(x, 2)
○ power(x, 4) could call on power(x, 3)

● Since almost all the cases are basically similar,
○ edit all but the simplest so they are identical
○ blend them all into one case, by using <= or >= or something, rather than lots of ==

● Try running the function, in pythontutor … does it still work?

Thinking about recursion

How can we avoid circular reasoning?

Discussion: thinking abstractly about function calls, both recursive and otherwise.

Basic Recursive Design checklist
If you're not sure whether your function works, or why it doesn't,
ask yourself:

1. Have I identified one (or more) valid simpler instance(s) of the same
problem?

2. Have I built my answer from the answer to the simpler instance(s)?
3. Have I identified a base case?
4. Is my answer in the base case correct?
5. Does Step 1 always get simpler and always reach the base?

(See "From Vision to Execution", Section 4.4 "Basic Recursive Design")

Good way to build instinct: Draw a diagram, circle sub-problem.

Function/Algorithm Design examples
Which of these should be use, to square or cube something? Done!

What about to find the alphabetically-earliest letter in a word?

● Relate to a solved problem/library function
● Design by cases
● Top-down design
● Or, now, "basic recursive design"

Group exercise: start writing "earliest_letter" function

