
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Office hours
● TA hours:

○ Mondays: 4-6pm and 8-10pm

○ Tuesdays: 4-6pm

● Email Suzanne to schedule meeting

Algorithm Design #1: Relate to a Solved Problem
Sometimes you may see a similarity to an existing problem or a math fact

Suppose we wanted to know if a point (x, y) is inside a circle
● use the distance formula, to the center of the circle: √(x-xc)

2+(y-yc)
2

● note that sometimes you'll want a library function, e.g. "sqrt", two notations:
○ import math

… math.sqrt((x-xcenter)**2, (y-ycenter)**2) … # assuming xcenter is the x of the center
○ from math import sqrt # refrain from using “import *”

… sqrt((x-xcenter)**2, (y-ycenter)**2) …

Algorithm Design #1: Relate to a Solved Problem
Sometimes you may see a similarity to an existing problem or a math fact

Suppose we wanted to know if a point (x, y) is inside a circle
● use the distance formula, to the center of the circle: √(x-xc)

2+(y-yc)
2

● note that sometimes you'll want a library function, e.g. "sqrt", use "import"
● you can also import from your own files, or other files in the project, e.g.,

○ from ShapeLibraryForCG import Circle, center_x, center_y, radius
from math import sqrt
c1 : Circle = Circle(100, 100, 20) # radius 20 at 100, 100
… math.sqrt((x-center_x(c1))**2, (y-center_y(c1))**2) … # call, e.g. "center_x" function
… math.sqrt((x-c1.center_x())**2, (y-c1.center_y())**2) … # send, e.g., "center_x" message

● Note: some libraries use function notation, some use message notation

Algorithm Design #1: Relate to a Solved Problem
Sometimes you may see a similarity to an existing problem or a math fact

Suppose we wanted to know if a point (x, y) is inside a circle
● use the distance formula, to the center of the circle: √(x-xc)

2+(y-yc)
2

● note that sometimes you'll want a library function, e.g. "sqrt", use "import"
● you can also import from your own files, or other files in the project
● Note: some libraries use function notation, some use message notation

○ our ShapeLibraryForCG allows you to choose either one

● Caution: Beware of "circular reasoning"
○ Can define circle_overlap_two_figures in terms of circle_overlap, or the other way, not both!

Algorithm Design #2: Top-Down Design
Sometimes a problem contains a simpler problem that's not yet solved
 (if the simpler problem is solved, this is "relate to a solved problem")

Algorithm Design #2: Top-Down Design
Pre-condition: must be true before entering the function

Post-condition: must be true before leaving the function

Benefits of TDD:

● Creates code that is easier to implement, debug, modify, and extend
● Avoids going off in the wrong direction

Algorithm Design #3: Design By Cases
Sometimes it's easiest to solve specific cases of a problem

Example discussion: identify specific cases in which windows can't overlap?

For more notes, see discussion in "From Vision to Execution"

Note: Usually, if doing a True/False design by cases, it's best to either

● list all True cases, have the final "else" return False
● or, list all False cases, have the final "else" return True

Python details: If/elif/else
If/elif/else statements can contain other statements:

● variable definitions
● return statements
● other if/else statements

It's also possible to have an if without an else, we'll see this later

Other uses of tests
We can check things like "radius >= 0" or "x1 < x2"

● In "if", when we want to choose one option or another in our algorithm
● In an if controlling a "throw", to indicate an "exception"

○ brief discussion in lecture, we'll see more of this later
● In a "precondition" statement, to indicate our algorithm can't handle this

case
● In an "and" or "or"

○ Warning: "x < y and z" doesn't mean what you want it to mean!
○ What should we write instead?

● Note: comparing for equality uses == rather than =
○ number_of_chickens = 5 # "=" gives a value to a variable
○ if number_of_chickens == 5: print("still have all the chickens") # "==" checks the values

Algorithm Design and Encoding (programming)
Algorithm-Design is an art, many approaches, including
● find a formula/use math
● split into cases
● rewrite in terms of another simpler (or already-solved) problem

Programming tools & discussion of their use for the problems we discussed
● function definitions (as before)
● variables
● if/else

