
CS 105: Introduction to
Computer Science

Prof. Thao Nguyen

Materials adapted from Dave Wonnacott

Spring 2025

Welcome!

● Please fill out a notecard

● Let me know if you can’t access Piazza

Why CS?

● The world runs on computers!

● Programming has many applications

● Develop and practice computational thinking

Course Staff
● Professor: Thao Nguyen (she/her)

○ From Hanoi, Vietnam
○ Ph.D. from Brown University
○ Research: Human-robot interaction and collaboration
○ Office: KINSC L303
○ Email: tnguyen3@haverford.edu

mailto:tnguyen3@haverford.edu

Course Staff
● Lab Instructor: Suzanne Lindell

○ Handles all lab assignments
○ Email: shlindel@haverford.edu

mailto:shlindel@haverford.edu

Course Staff
● Teaching Assistants:

Amy SaxonAhmed Haj Ahmed Mateo TaylorMeghan Galban

Expectations
● Little/no prior programming experience
● Attend all lectures and labs on time, and actively participate

○ Email me if you will be absent

● Work on lab projects each week
○ Start your work well before the deadline
○ It's good to arrive at lab already stuck on something, so we can help

● Take two in-class midterms
● Develop and present a final project
● Help your peers, but stay within the Honor Code and CS collaboration policy
● Treat others with respect and awareness
● Let us know if you are struggling/scared/discouraged

Resources
● Course webpage
● Office & TA hours
● Lab monitors in H110 Sunday – Thursday from 7-11pm
● Piazza: should be used for all content/logistic questions
● Email: allow at least 24 hours for a response (48 during weekends)

https://thao-nguyen-ai.github.io/courses/s25/cs105/

Collaboration Policy
● Allowed sources:

○ Textbook, lecture slides
○ Course staff
○ Your lab partner(s)
○ The Internet, though it must be cited and only used for reference

● Rule of thumb: you may not copy code
○ This includes copy-paste, manual copying, and AI coding
○ When in doubt, ask the instructors

Academic Accommodations

https://www.haverford.edu/access-and-disability-services/
accommodations/receiving-accommodations

https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations
https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations

Let's
Get
Started!

So, let's start!
Programming is about problem solving (specifically, problems involving information)

We distinguish
● Problem instances (e.g., what is .. 6*7? 1337*1701? area of 12'x17' room?)
● General problems (e.g., multiply numbers; find areas of rectangles)

We express solutions to general problems as computer programs
● Many specific notations, e.g. Python, Java, C++, C#, Haskell

Warning: Programs often contain "bugs"

So, let's start programming!

Solving a problem instance (size of a 12' by 17' room, in square feet):
12 * 17

Or, to be more helpful:
print("A 12' by 17' room is", 12*17, "square feet")

We can use variables to name things
 area: float = 12*17
 print("A 12' by 17' room is", area, "square feet")

Let's really start programming!

We express the solution to a general problem as a Python "function":
def rectangle_area(width: float, height: float) -> float:

return width*height # area is just width times height

rectangle_area(12, 17)

Or, to be more helpful:
print("area of 12' by 17' room is", rectangle_area(12, 17), "square feet")

Anatomy of a Python Function
def rectangle_area(width: float, height:float) -> float:

return width*height # area is just width times height

rectangle_area(12, 17)

● parameters (w and h): identify necessary information for the problem
● type (float): identifies kind of information (number, text, list, etc.)

○ Type names after w and h give type of information coming in
○ Type name after -> gives the type of information coming out

● body is made up of Python statements (such as return) to produce the result
● return identifies the information coming out of the function
● comments (with #) communicate to other programmers, not the computer
● call to function gives actual arguments (12 and 17), can be used in later calc.

○ rectangle_area(12, 17) + rectangle_area(12,5) # combined area of two rooms

Now, you start programming!
For reference, our previous Python function:

def rectangle_area(width: float, height: float) -> float:
return width*height # area is just width times height

rectangle_area(12, 17) # function call

Group activity: Write either

● "right_triangle_area"
● "useful_room_area" (door-swing removes seven square feet of useful space)

Next example: useful_room_area
Let's explore the answer to that second exercise:

def useful_room_area(width: float, height: float) -> float:
return ?????

useful_room_area(12, 17)

But, what if someone asks for?
useful_room_area(4, 1.2)

⇒ If time permits, Thao introduces "if" statements (otherwise, Thursday!)

Basic Uses of Conditional Statements ("if")
def useful_room_area(width: float, height:float) -> float:

 if width*height >= 7:
 return width*height - 7 # width times depth, minus door-swing
 else:
 return 0

useful_room_area(4, 1.2)

Anatomy of if/else statements:
● test condition: a boolean expression (True or False) telling which part to select
● true-branch: code indented below test is used when test condition is true
● false-branch: code indented below "else:" is used when test condition is false

Programming and CS: Back to the Big Picture
Computer Science involves reasoning about programs and computation
● How do we know if a program is correct?
● How do we understand the cost of running a program?
● How do we try to predict/understand the social impact?

Use techniques from many fields:
● Mathematics
● Engineering
● Social engagement (with customers; among programmers)

