CS 105: Introduction to
Computer Science

e Prof. Thao Nguyen —

Spring 2025

Materials adapted from Dave Wonnacott



Welcome!

e Please fill out a notecard

e Let me know if you can't access Piazza



Why CS?

e The world runs on computers!

e Programming has many applications

o @oftheinternetthings

e Develop and practice computational thinking



Course Staff

e Professor: Thao Nguyen (she/her)
o From Hanoi, Vietham
Ph.D. from Brown University
Research: Human-robot interaction and collaboration
Office: KINSC L303
Email: tnguyen3@haverford.edu

© O O O



mailto:tnguyen3@haverford.edu

Course Staff

e Lab Instructor: Suzanne Lindell

o Handles all lab assignments
o Email: shlindel@haverford.edu



mailto:shlindel@haverford.edu

Course Staff

e Teaching Assistants:

Ahmed Haj Ahmed Meghan Galban Amy Saxon Mateo Taylor




Expectations

e Little/no prior programming experience

e Attend all lectures and labs on time, and actively participate
o Email me if you will be absent

e Work on lab projects each week
o Start your work well before the deadline
o It's good to arrive at lab already stuck on something, so we can help

Take two in-class midterms

Develop and present a final project

Help your peers, but stay within the Honor Code and CS collaboration policy
Treat others with respect and awareness

Let us know if you are struggling/scared/discouraged



Resources

Course webpage
Office & TA hours

Lab monitors in H110 Sunday - Thursday from 7-11pm
Piazza: should be used for all content/logistic questions
Email: allow at least 24 hours for a response (48 during weekends)


https://thao-nguyen-ai.github.io/courses/s25/cs105/

Collaboration Policy

e Allowed sources:
o Textbook, lecture slides
o Course staff
o Your lab partner(s)
o The Internet, though it must be cited and only used for reference

e Rule of thumb: you may not copy code
o This includes copy-paste, manual copying, and Al coding
o When in doubt, ask the instructors



Academic Accommodations

Haverford College is committed to providing equal access to students with a disability. If you have (or think
you have) a learning difference or disability — including mental health, medical, or physical impairment -
please contact the Office of Access and Disability Services (ADS) at hc-ads@haverford.edu. The
Coordinator will confidentially discuss the process to establish reasonable accommodations.

Students who have already been approved to receive academic accommodations and want to use their
accommodations in this course should share their verification letter with me and also make arrangements to
meet with me as soon as possible to discuss their specific accommodations. Please note that accommodations
are not retroactive and require advance notice to implement.

It is a state law in Pennsylvania that individuals must be given advance notice if they are to be recorded.
Therefore, any student who has a disability-related need to audio record this class must first be approved for
this accommodation from the Coordinator of Access and Disability Services and then must speak with me.
Other class members will need to be aware that this class may be recorded.

https://www.haverford.edu/access-and-disability-services/
accommodations/receiving-accommodations



https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations
https://www.haverford.edu/access-and-disability-services/accommodations/receiving-accommodations




So, let’s start!

Programming is about problem solving (specifically, problems involving information)

We distinguish
e Problem instances (e.g., what is .. 6*7? 1337*1701? area of 12'x17' room?)
e General problems (e.g., multiply numbers; find areas of rectangles)

We express solutions to general problems as computer programs
e Many specific notations, e.g. Python, Java, C++, C#, Haskell

Warning: Programs often contain "bugs"



S0, let’s start programming!

Solving a problem instance (size of a 12' by 17' room, in square feet):
12 * 17

Or, to be more helpful:
print ("A 12' by 17' room is", 12*17, "square feet")

We can use variables to name things
area: float = 12*17

print ("A 12' by 17' room 1is", area, "square feet")



Let's really start programming!

We express the solution to a general problem as a Python "function";
def rectangle area(width: float, height: float) -> float:
return width*height # area is just width times height

rectangle area(12, 17)

Or, to be more helpful:

print ("area of 12' by 17' room is", rectangle area(l2, 17), "square feet")



Anatomy of a Python Function

def rectangle area(width: float, height:float) -> float:
return width*height # area is just width times height

rectangle area (12, 17)

e parameters (w and h): identify necessary information for the problem

o type (float): identifies kind of information (number, text, list, etc.)
o Type names after w and h give type of information coming in
o Type name after -> gives the type of information coming out

body is made up of Python statements (such as return) to produce the result
return identifies the information coming out of the function
comments (with #) communicate to other programmers, not the computer

call to function gives actual arguments (12 and 17), can be used in later calc.
o rectangle_area(12, 17) + rectangle_area(12,5) # combined area of two rooms



Now, you start programming!

For reference, our previous Python function:

def rectangle area(width: float, height: float) -> float:
return width*height # area is just width times height

rectangle area (12, 17) # function call

Group activity: Write either

e 'right_triangle_area"
e '"useful_room_area" (door-swing removes seven square feet of useful space)



Next example: useful room area

Let's explore the answer to that second exercise:
def useful room area(width: float, height: float) -> float:

return 2?27?7727

useful room area(l2, 17)

But, what if someone asks for?

useful room area (4, 1.2)

= If time permits, Thao introduces "if" statements (otherwise, Thursday!)



Basic Uses of Conditional Statements ("if")

def useful room area(width: float, height:float) -> float:
if width*height >= 7:
return width*height - 7 # width times depth, minus door-swing
else:

return 0

useful room area(4, 1.2)

Anatomy of if/else statements:
e test condition: a boolean expression (True or False) telling which part to select
e true-branch: code indented below test is used when test condition is true
e false-branch: code indented below "else:" is used when test condition is false



Programming and CS: Back to the Big Picture

Computer Science involves reasoning about programs and computation
e How do we know if a program is correct?
e How do we understand the cost of running a program?
e How do we try to predict/understand the social impact?

Use techniques from many fields:

e Mathematics

e Engineering

e Social engagement (with customers; among programmers)



