CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Admin

- Final project presentation sign-up on Piazza
 - Presentation guidelines posted on course webpage
 - Email me pdfs of your slides the night before
 - Class attendance taken for Dec 9, 10, 11

Outline for today

Clustering overview

K-means

Gaussian Mixture Models (GMMs)

Outline for today

Clustering overview

K-means

Gaussian Mixture Models (GMMs)

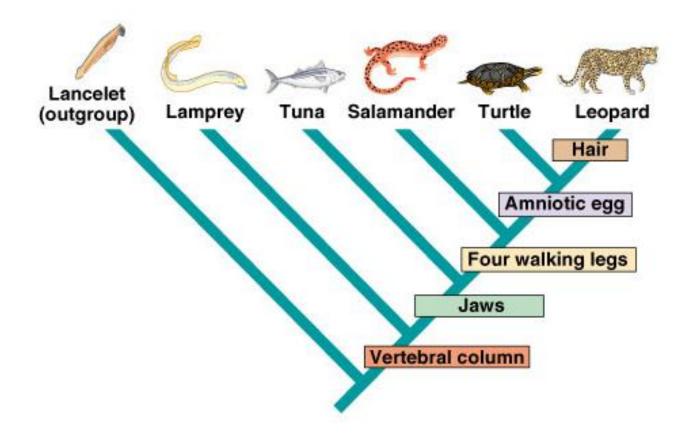
Clustering

- Learn about the structure in our data
- Cluster new data (prediction)
- Goal: $C = \{C_1, C_2, ..., C_k\}$ such that within cluster difference is minimized

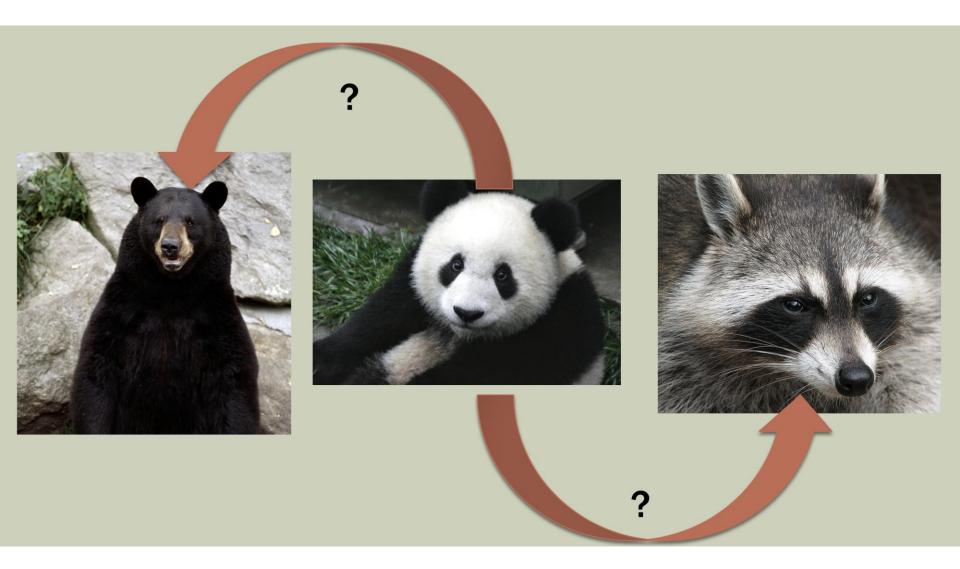
Two main types of clustering

- Flat/Partitional:
 - K-means
 - Gaussian mixture models
- Hierarchical:
 - Agglomerative: bottom-up
 - Divisive: top-down
 - Examples: UPGMA and Neighbor Joining

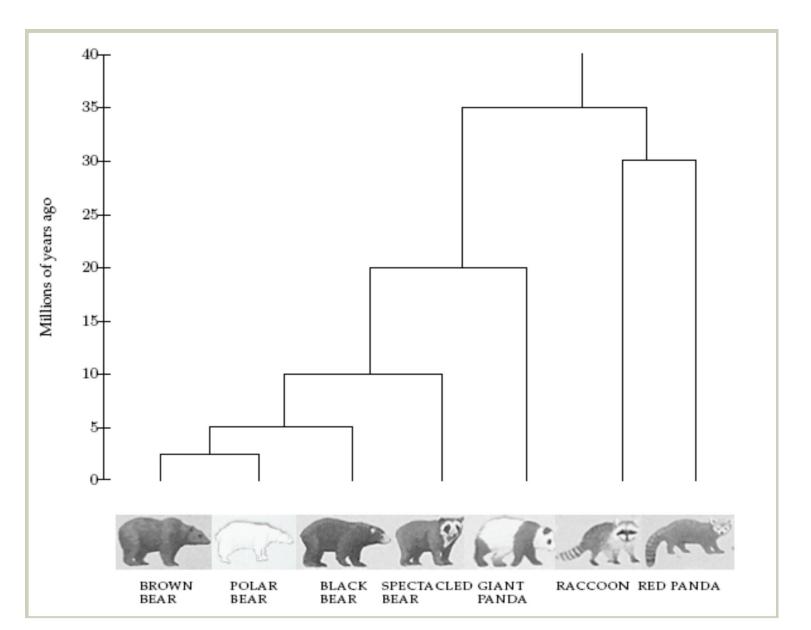
Hierarchical clustering example: trees



Are pandas more closely related to bears or raccoons?

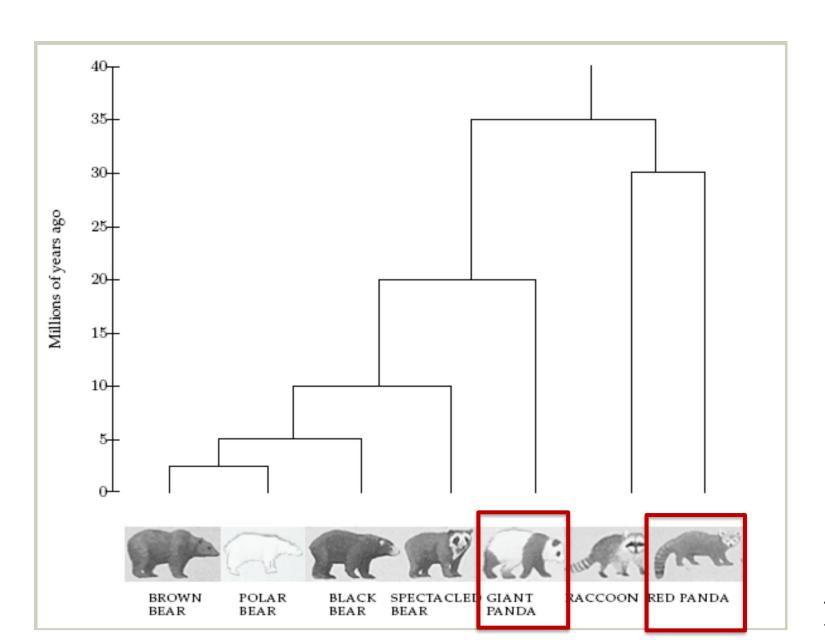


Are pandas more closely related to bears or raccoons?



Credit: Ameet Soni

What about red pandas?



Credit: Ameet Soni

Outline for today

Clustering overview

K-means

Gaussian Mixture Models (GMMs)

K-means Algorithm

 Initialization step: Choose k means (cluster) centers) randomly from the data

$$\vec{\mu}_1^{(1)}, \vec{\mu}_2^{(1)}, \dots, \vec{\mu}_k^{(1)}$$

Expectation-maximization (EM) algorithm

E-step: assign each datapoint to the closest mean

$$\vec{x}_i \in C_k^{(t)}$$

M-step: recompute means as the cluster average
$$\vec{\mu}_k^{(t+1)} = \frac{1}{|C_k^{(t)}|} \sum_{\vec{x}_i \in C_k^{(t)}} \vec{x}_i$$

iterate

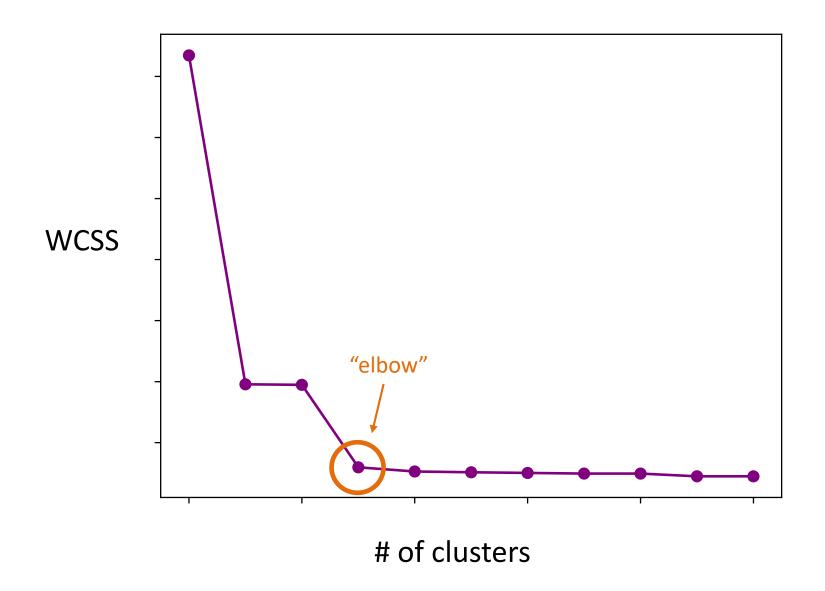
K-means Algorithm

Minimizes:

$$WCSS = \sum_{k=1}^{K} \sum_{\vec{x}_i \in C_k} \left\| \vec{x}_i - \vec{\mu}_k \right\|^2$$
 within-cluster sum of squares

- Stopping criteria:
 - No change in cluster membership
 - Max # of iterations exceeded
 - Configuration/pattern you've seen before

How to choose k?



Handout 21

Handout 21

1.

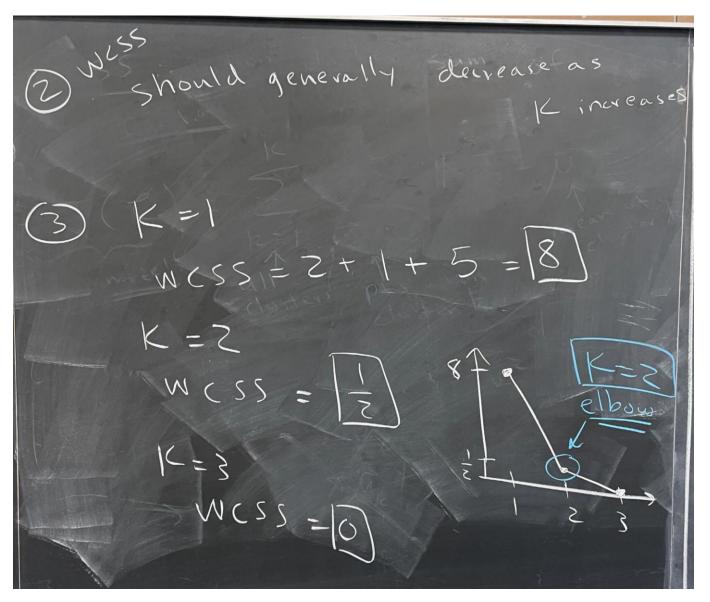
a) E-step:
$$C_1^{(1)} = {\{\vec{x}_2\}}, \ C_2^{(1)} = {\{\vec{x}_1, \vec{x}_3\}}$$

b) M-step:
$$\vec{\mu}_1^{(2)} = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$$
, $\vec{\mu}_2^{(2)} = \begin{bmatrix} 3.5 & 0.5 \end{bmatrix}^T$

c) E-step:
$$C_1^{(2)} = {\{\vec{x}_1, \vec{x}_2\}}, C_2^{(2)} = {\{\vec{x}_3\}}$$

M-step:
$$\vec{\mu}_1^{(3)} = \begin{bmatrix} 2.5 & 2 \end{bmatrix}^T$$
, $\vec{\mu}_2^{(3)} = \begin{bmatrix} 4 & -1 \end{bmatrix}^T$

Handout 21



5. Runtime is O(npKT)

Outline for today

Clustering overview

K-means

Gaussian Mixture Models (GMMs)

Problems with K-means

- Does not account for different cluster sizes,
 variances, and shapes
- Does not allow points to belong to multiple clusters
- Not generative (cannot create a new data point)

Discriminative vs. Generative Algorithms

- <u>Discriminative</u>: finds a decision boundary
 - Logistic regression, K-means
- Generative: estimates probability distributions
 - Naïve Bayes, Gaussian Mixture Models

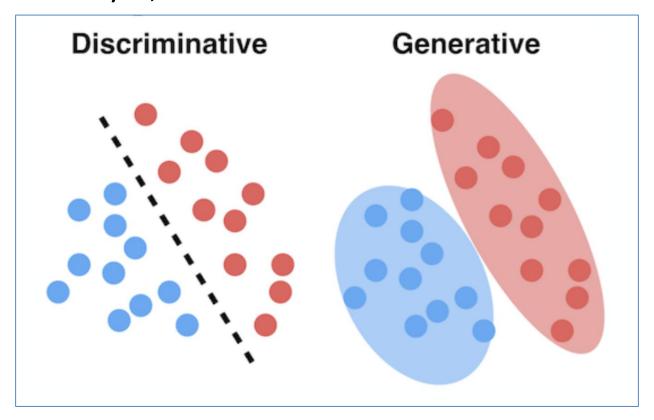


Figure: Ameet Soni

Gaussian Mixture Models (GMMs)

$$p(\vec{x}_i) = \sum_{k=1}^K p(\vec{x}_i, k) = \sum_{k=1}^K p(k)p(\vec{x}_i|k) = \sum_{k=1}^K \pi_k N(\vec{x}_i|\vec{\mu}_k, \sigma_k^2)$$
cluster
membership
cluster
distribution

Maximize likelihood:

$$L(X) = \prod_{i=1}^{n} p(\vec{x}_i) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k N(\vec{x}_i | \vec{\mu}_k, \sigma_k^2)$$
Model parameters