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Admin

Project proposal feedback given over email

Lab 6 grades & feedback posted on Moodle

Lab 8 due tonight at midnight

Lab this week: midterm 2 review



Outline for today

* Bootstrap, Bagging and Random forests

* Midterm 2 Review
— Revisit confusion matrices
— Entropy vs. classification error
— Central Limit Theorem
— PCA (linear transformation + interpretation)
— Nalve Bayes
— Algorithmic Bias and Disparate Impact
— Logistic regression and cross entropy



Outline for today

* Bootstrap, Bagging and Random forests



The bootstrap: Resampling

Data:X=[2, 3, 4, 8,0, 6, 1, 10, 2, 4]

Resample, with
replacement, T —=
times

18

10

81

8 3

6 4

Slide: lain Mathieson

Compute Mean

246101118 —
16414212 —
626424102 —
421081086 3—
64642434 —

—

—

4.2

2.2

4.5

6.2

4.3

Frequency

200

150

100

50

Use the means from the
resampled data to estimate
the distribution!

95% of the means are
between 2.3 and 5.9 (T=1000)

Mean of resampled data



The bootstrap: Resampling

“Estimate the range (Max—Min)”

Data:X=[2, 3, 4, 8,0, 6, 1, 10, 2, 4]
Compute Range

18246101118 —|9 Use the ranges from the
resampled data to estimate
1016414212 —|6 the distribution!

81626424102 —|9
Resample, with

replacement, T —™83 42108 10 8 6 3—|8
times

400

300

6464642434 —|4

200

100

2 4 6 8 10

Range of resampled data

Slide: lain Mathieson



The bootstrap: Resampling

Statistic

This distribution
gives us an estimate
of the uncertainty
in this estimate

i

Resampled data  Resampled statistic

Slide: lain Mathieson



Bootstrap example

Setup: you obtain 0.87 accuracy on a test dataset using a new
algorithm

Goal: find a 95% confidence interval for your estimate
)




Bagging (Bootstrap Aggregation)



Motivation: bias and variance

X
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Label each picture with variance (high or low) and bias (high or low)




Motivation: bias and variance

A B C

Variance: low
Bias: high

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni
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Motivation: bias and variance

X
X
XN X
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A B

Variance: low Variance: high
Bias: high Bias: high

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Motivation: bias and variance

X
X
»: X X
' $ X
2%

A C

Variance: low Variance: high Variance: high
Bias: high Bias: high Bias: low

QR
R
AN

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Motivation: bias and variance

X
. X
@ X
B

A

Variance: low Variance: high Variance: high
Bias: high Bias: high Bias: low

C

This is the type of classifier
we want to average!

Label each picture with variance (high or low) and bias (high or low)

Example from Ameet Soni



Ensemble Idea

* Average the results from several models with
high variance and low bias

— Important that models be diverse (don’t want
them to be wrong in the same ways)

* |f n observations each have variance s?, then
the mean of the observations has variance
s?/n (reduce variance by averaging!)



Bagging Algorithm

* Bagging = Bootstrap Aggregation [Brieman, 1996]

“ Bootstrap (randomly sample with replacement) original data to create many
different training sets

* Run base learning algorithm on each new data set independently

Bootstrapped Bootstrapped Bootstrapped
Sample (n=5) Sample (n=5) Sample (n=5) Sample (n=5) Sample (n=3) Sample (n=5)

Desmond Ong, Stanford

Modified from Ameet Soni



Bagging (Bootstrap Aggregation)

Train:
for t in range(T):

* create bootstrap sample Xt of size n
from training data

* train on X' to get model h{t

Test:

for each test example, the T classifiers vote
on the label



Random Forests




Handout 18



Handout 18

1. Bootstrap




Handout 18

2. Bagging
Unordered
* n=2>={nq,ny} {n;,n,}, {ny,,n,} 3sets

*n=3
— {n{,n{,n{} = 3sets

— {ny,ny,nz}=>1set  — 10 sets
— {n{,nq,n,} > 6sets |

Ordered: n" sets



Outline for today

e Midterm 2 Review

— Revisit confusion matrices



Confusion matrix with more classes

airplane -
automobile -
bird 4
cat -
deer -
True
dog -
frog -

horse -

ship -

truck -

(Fﬁ' ch:,q" a;‘;n.q (:J‘-
o

Figure by: Qun Liu (confusion matrix on cifar-10 dataset)



Confusion matrix with more classes

airplane 12 11 18 0 2 4 85 27
automobile A

bird4 4

cat 1 3

deer - 10

True

dog - 2

frog - 7

horse - 24

ship - 27

truck - 19

\,b-:\ﬂ" I A N
S

N Pred

Figure by: Qun Liu (confusion matrix on cifar-10 dataset)



Confusion matrices with just two classes don’t
have to be “positive” and “negative”

* Example: male and female
— No “positive” and “negative” class
— ROC curve not appropriate



Confusion matrices without hard-coding

cm = np.zeros((K,K))

for ex In test:
true = ex.label
pred = model.classify(ex.features)
cm(true,pred] +=1



Outline for today

e Midterm 2 Review

— Entropy vs. classification error



From the study guide

4. Information Theory

Conceptual 1dea of entropy as well as formal definition

e Shannon encoding (and decoding), plus how to use entropy to compute average number of
bits needed to send one piece of information

e Use of conditional entropy and mformation gain to choose best features
e Comparison with classification accuracy as a way to choose best features

e How to transform continuous features into binary features? (see Handout 13)



Entropy vs. classification error

entropy: — ¥ c,qi5v) P(c) log, p(c)

1 \

0.5

classification error:
1- maxcEvals(Y)p(C)

p(Y=1)



Splitting nodes based on entropy
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pli=1)
Figure by Sebastian Raschka



Decision trees from entropy (info gain) vs.
classification error!

(108, 92]

thal=fixed_defect [4, 6]

| ca<=0.5=False [0, 6]: 1

| ca<=0.5=True [4, 0]: -1

hal=normal [84, 19]

thalach<=110.0=False [84, 15]

age<=55.5=False [28, 11]
chol<=248.5=False [14, 10]

| sex=female [13, 3]

| cp=asympt [3, 3]
| age<=57.5=False [1, 3]

| | | chol<=337.5=False [1, 0]: -1
| | | chol<=337.5=True [0, 3]: 1

| | age<=57.5=True [2, @]: -1

| cp=atyp_angina [2, 0]: -1

| cp=non_anginal [7, @]: -1
|
s
|
|
|

cp=typ_angina [1, 0]: -1
ex=male [1, 7]
age<=65.5=False [1, 2]
| age<=66.5=False [0, 2]: 1
| age<=66.5=True [1, 0]: -1
age<=65.5=True [0, 5]: 1
hol<=248.5=True [14, 1]
oldpeak<=2.7=False [8, 1]: 1
oldpeak<=2.7=True [14, 0]: -1
ge<=55.5=True [56, 4]
trestbps<=113.5=False [47, 1]
| oldpeak<=3.55=False [0, 1]: 1
| oldpeak<=3.55=True [47, ©0]: -1
trestbps<=113.5=True [9, 3]
| oldpeak<=0.05=False [6, @]: -1
oldpeak<=0.85=True [3, 3]
| cp=asympt [0, 2]: 1
| cp=atyp_angina [2, @]: -1
| cp=non_anginal [1, 1]
| | age<=41.5=False [0, 1]: 1
| | age<=41.5=True [1, @]: -1
cp=typ_angina [0, 0]: -1

|
|
|
|
|
|
|
|
|
|
|
|
|
cl
|
|

|

thalach<=110.0=True [0, 4]: 1
hal=reversable_defect [20, 67]

cp=asympt [5, 53]

| oldpeak<=0.55=False [0, 43]: 1
oldpeak<=0.55=True [5, 10]
| chol<=237.5=False [0, 8]: 1
| chol<=237.5=True [5, 2]
| | chol<=179.5=False [4, 0]: -1
|
|

|

|

|

|

| | chol<=179.5=True [1, 2]

| | age<=59.5=False [1, 0]: -1
| | | | age<=59.5=True [0, 2]: 1
cp=atyp_angina [3, 3]

| age<=46.5=False [1, 3]

| | trestbps<=109.0=False [0, 3]: 1

| | trestbps<=109.0=True [1, 0]: -1

| age<=46.5=True [2, @]: -1
cp=non_anginal [9, 10]

| oldpeak<=1.85=False [@, 5]: 1

| oldpeak<=1.85=True [9, 5]

| | trestbps<=121.0=False [3, 5]

| | | chol<=232.5=False [0, 4]: 1

| | | chol<=232.5=True [3, 1]

| | | | trestbps<=128.5=False [3, 0]: -1
| | | trestbps<=128.5=True [0, 1]: 1
| | trestbps<=121.0=True [6, 0]: -1

cp=typ_angina [3, 1]
| oldpeak<=0. False [3, @]: -1
| oldpeak<=0. True [0, 1]: 1

t
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Outline for today

e Midterm 2 Review

— Central Limit Theorem



From the study guide

7. Statistics

e Motivation for studying statistics and hypothesis testing

e Probability distributions (discrete vs. continuous)

e Computing (theoretical) expected value and variance for discrete distributions

e Sample mean and sample variance

e Central limit theorem (CLT) and application in cases where the mean/variance are known
e Computation and interpretation of Z-scores and p-values

e Null vs. alternative hypotheses; when to reject the null hypothesis; significance level «

e Using randomized trials and permutation testing to obtain more precise p-values

e Idea of a t-test as a way to test differences in means (not details)

e Bootstrap: sampling from our data with replacement (usually keeping n the same)

e How to use bootstrapping to obtain confidence intervals

e Bagging (Bootstrap Aggregation): create a classifier for each bootstrapped training dataset
e Idea of using an ensemble of classifiers (ideally with low bias) to reduce variance

e To test, let each classifier in the ensemble “vote”



Central Limit Theorem

If X1, X5, ..., X,, are samples from a population with
expected value u and finite variance %, and X,, is the

sample mean, then

(X
7 = 7ll_r)rolo (G/\/%‘) mfean/va;riance
is a standard normal distribution N(0,1).

Standard normal distribution

<> Scribbr



p-value

e Probability of observing a result as or more extreme
than ours under the null hypothesis

e Estimated by:
— Integrating pdf based on test statistic
— N, /T (T: # trials ran, N,: # times observed extreme result)

e Usually compare with a = 0.05 (significance level)



Outline for today

e Midterm 2 Review

— PCA (linear transformation + interpretation)



From the study guide

6. Data Visualization

e Best ways of visualizing discrete vs. continuous data

e How to choose colors; idea of sequential, diverging, or qualitative color schemes

e How to make color schemes color-blind and black/white printing friendly

e Idea of principal component analysis (PCA) as a way to accomplish dimensionality reduction
e Using dimensionality reduction to visualize high-dimensional data

e Details of the PCA algorithm (except computing eigenvalues and eigenvectors)

e Runtime of PCA
e Genealogical interpretation of PCA plots for genetic data



Principal Component Analysis (PCA)

Transforms p-dimensional data so that the new first dimension
explains as much of the variation as possible, the new second
explains as much of the remaining variation as possible, and so on

PCA is a linear transformation

Typically, we look at the first few dimensions of the transformed
data as a means of dimensionality reduction and visualization

PCA is often used for:

— Data visualization
— Infer qualitative relationships between groups



PCA “classic” genetics example




Handout 18



Handout 18




Handout 18
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Outline for today

e Midterm 2 Review

— Nalve Bayes



From the study guide

1. Probability and Bavesian Models

e Probability basics including joint probability, conditional probability, Bayes rule

e Other terms: marginalization, independence, conditional independence

e DBayesian models: posterior, prior, likelihood, evidence

e Examples of when you might use a Bayesian model (e.g., email spam, trisomy detection)

e Idea of using marginalization to compute the evidence (see Handout 10)

2. Naive Bayes

e Derivation of the Naive Bayes model for p(y = k|7) (via the Naive Bayes assumption)
e How do we estimate the probabilities of a Naive Bayes model?
e Laplace counts (motivation, application details)

e How can we predict the label of a new example after fitting a Naive Bayves model?

What types of features/label do we currently require for Naive Bayes?

e How Naive Bayes can be mmplemented using dictionaries in Python



Bayes’ Theorem

* P(A,B) =P(A|B)P(B)
* P(A,B)=P(B|A)P(A)

always true!

P(B|A)P(A)
P(B)

P(A|B) =



Independence

* Independence: P(A,B) = P(A)P(B)\

not always true!

S
* Conditional independence: P(A|B,C) = P(A|C)
|
Naive Bayes

assumption



Nailve Bayes

Model

p
pG =KD <py =k | [pasly = k)
j=1

Classification: ¥ = argmaxy—1 g p(y = k|x)



Estimating p(y = k) & p(x;|y = k)

# of examples with label k

d

.« O, — Nir+1
k n+kK
# of classes fory
# of examples with feature j = value v and class label k
_ Nk,j,v+1

IV T NI

# of feature values for feature j



Outline for today

e Midterm 2 Review

— Algorithmic Bias and Disparate Impact



From the study guide

3. Algorithmic Bias and Disparate Impact

e Sample size disparity and how it can impact results

e May need different models for different groups, so a single model is not possible
e General idea that training on past data will recapitulate historical biases

e Problem setup/notation for redundant encoding of features (X, Y, C)

e Definitions of: direct vs. indirect discrimination, disparate impact

e Idea of training a classifier to predict X (protected) from Y to detect disparate impact



How can we tell if an algorithm is biased?

D: dataset with attributes X, Y

* X'is protected
*Yis unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

Direct discrimination: C = f(X)

* Female instrumentalist not hired for orchestra
* Some ethnic groups not allowed to eat at a restaurant



How can we tell if an algorithm is biased?

D: dataset with attributes X, Y

* X'is protected
*Yis unprotected (other features)

Goal: determine outcome C (hired, admitted, etc)

Indirect discrimination: C = f(Y)
* but strong correlation between X and Y

* Ex: housing loans
* Ex: programming experience



Disparate Impact

O minority group

f {° X: protected attributes | ..oty srous
eatures
* Y: other attributes
* C: binary outcome € {0,1}
PR

not hired hired

Legal definition

fP(C=1X=0)<08*P(C=1|X=1)
= disparate impact




Outline for today

e Midterm 2 Review

— Logistic regression and cross entropy



From the study guide

5. Logistic Regression

e Motivation for logistic regression; our model i1s a logistic function that takes in @ - 7

e Logistic regression creates a linear decision boundary (compute/visualize for p = 1)

e In logistic regression our cost is the negative log likelihood (don’t need to derive)

e Intuition/visualization of the cost function (and relationship to cross entropy)

e Stochastic gradient descent (SGD) for logistic regression. relationship to linear regression

e Interpretation of the weights as feature importance



3 important pieces to SGD

* Hypothesis function (prediction)

1
1l +ewe

he(®) = p(y = 1|z) =




Logistic (sigmoid) function

Transforms a continuous real number into a
range of (0, 1)

$(z) =

14+e"%




Logistic Regression

* Binary classification y € {0,1}
* Model will be
hw(X) = p(y = 1]X) =

Q | =

1

e Classification (already have w)
ifw-x>0=>9=1
W-X<0=9=0



3 important pieces to SGD

* Hypothesis function (prediction)

1
1l +ewe

he(®) = p(y = 1|z) =

e Cost function (want to minimize)

J(w) = — Zyz' log huw (25) + (1 — ;) log(1 — e (s))




3 important pieces to SGD

* Hypothesis function (prediction)

1
1l +ewe

he(®) = p(y = 1|z) =

e Cost function (want to minimize)

J(w) = — Zyz' log huw (25) + (1 — ;) log(1 — e (s))

* Gradient of cost wrt single data point x.

Ve, (W) = (hw(®i) = yi)xi




Stochastic Gradient Descent for
Logistic Regression (binary classification)

setw =0

while cost J(w) is still changing:
shuffle data points
fori=1,..n:

W Ww-— aV]y{(V_V))
\

J

store ](W) derivativé of J(W) wrt x,




For each method/approach, is X
continuous or discrete? What about y?

Linear regression
Polynomial regression i
Decision trees/stumps *out oty
ROC curve as an evaluation metric

Naive Bayes

Logistic regression

Entropy and information gain

PCA



