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Admin

e Study guide & practice midterm posted

* Midterm 2 review next week



Outline for today

e Randomized trials for the null distribution

* Are the means of two samples different?
— t-tests
— Permutation testing

* Bootstrapping



Outline for today

e Randomized trials for the null distribution



Central Limit Theorem

* Assumptions
— X;, X5, ... X, are iid samples
— From a population with mean u
— Finite variance ¢?

X-rn, -
Z = lim ﬁ( ‘“)
n—00 o

is a standard normal distribution (i.e. mean 0 and
variance 1)

* THEN




Central Limit Theorem

e Last time we saw that the CLT could be used to
estimate a p-value

* We first obtain a Z-score, then compute the
probability of observing a result as or more
extreme under the null hypothesis

Xn_
Z = lim \/ﬁ( “’)
n—00 o

 However, this only approximates a p-value




Randomized Trials

* Simulate the distribution under the null hypothesis

* Process:
1. Run T trials that mimic our data under the null
hypothesis
2. Record relevant information for each trial

3. Count N, = how many times we observe a result
as or more extreme than the original data

4. p-value = N /T Data: n = 20 die rolls, X,, = 4.2
eH,: die is fair
eH;: die is weighted towards
higher values (one-sided)
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Outline for today

* Are the means of two samples different?
— t-tests
— Permutation testing



Difference in means

* Example blood pressure data:
— Before meds: [117, 54, 96, 123, ...] nexamples, X, = 112
— After meds: [72, 98, 105, 82, ...] mexamples, X, = 96

* Hy: all #s are drawn from the same distribution

* H,: after the medication, blood pressure was
lowered (one-sided)



Permutation Testing

 Simulate the null distribution

* Process:
1. Run T trials that permute the “labels” of the data

2. For each trial, record the difference in means
between the labels

3. Count N, = how many times we observe a result
as or more extreme than the original data

4.p-value= N, /T
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t-tests

e CLT-inspired test: -
_ Xn—u
Z N N(0,1)

* Don’t know o%? Use sample variance

Xn—U

\JS%/n

t = ~ t-distribution

Z distribution
(standard normal)

t-distribution
(n close to 30)

t-distribution
(n smaller than 30)



https://www.geeksforgeeks.org/engineering-mathematics/students-t-distribution-in-statistics/

https://www.khanacademy.or



https://www.khanacademy.org/math/ap-statistics/xfb5d8e68:inference-quantitative-means/two-sample-t-test-means/v/two-sample-t-test-for-difference-of-means

Outline for today

* Bootstrapping



Example: estimating the mean

Data:X=1[2,3,4,8,0,6, 1, 10, 2, 4]

From some distribution with mean u - we want to learn about u
: = 1
Estimate of the mean X = ;Z?=1Xi =4

How good is this estimate?

Sample standard deviation s = \/ﬁ (X —X)2=3.16

By the central limit theorem, we know that X is approximately normally
2

. . . . S . .
distributed with variance —, SO we can construct confidence intervals and p-

values for u etc.

Slide: lain Mathieson



Confidence Intervals

* Range of most common values from the distribution

A = dis ribvtion
~~ (n<30)

2.570

— ' 5"“— —————— 412‘ 7 + =D
=D ~ 9 §:4l_ \ ~ §
Y5c Cit
20 1.2 e a4y ¢ 0o

* 95% of the time, the 95% CI will contain the true value



Slide: lain Mathieson

The Bootstrap

In an 18t century story by Rudolph Erich
Raspe, Baron Munchausen falls to the
bottom of a deep lake.

About to drown, he has the idea to lift
himself up by pulling on his bootstraps

(In the original German version, he pulls
himself up by his hair, left).

Obviously impossible, this story gave its
name to a statistical technique (Efron, 1795)
that seems magical, in the sense that you
can get something (estimates of
uncertainty) for nothing!

In general, the bootstrap is an incredibly
useful statistical technique — perhaps one of
the most useful in all of modern statistics.
You should use it everywhere.




The bootstrap: Resampling

Data: X=1(2,3,4,8,0,6,1,10, 2, 4]
Compute Mean

——

18246101118 —|4.2 Use the means from the

resampled data to estimate
1016414212 —|22 the distribution!

81626424102 —|45 95% of the means are

Resample, with between 2.3 and 5.9 (T=1000)

replacement, T —™83 42108 10 8 6 3—*|6.2
times

200

150

6464642434 —|43] .

100

50

S —— Mean of resampled data
Slide: lain Mathieson



The bootstrap: Resampling

“Estimate the range (Max—Min)”

Data: X=[2,3,4,8,0,6,1, 10, 2, 4]
Compute Range

18246101118 —|9 Use the ranges from the
resampled data to estimate
1016414212 —|6 the distribution!

81626424102 —|9
Resample, with

replacement, T° —™ 8342 108 10 8 6 3—*|8
times

400

300

6464642434 —|4 .

200

Mean of resampled data

Slide: lain Mathieson



The bootstrap: Resampling

* The key point is that as long as we can resample our data
(which we can always do).

* And calculate the thing we want to estimate (which we can
almost always do).

* We can bootstrap anything, and get a sense of how good our
estimate is.

 We do not need to make any assumptions about the
underlying distribution. For example, to apply the central
limit theorem.

Slide: lain Mathieson



The bootstrap: Resampling

* In general, resampling or permutation method can answer
most of the statistical questions that we are interested in (is
the mean zero? are these distributions the same?)

 Why then in intro stats did we learn about t-tests, z-scores,
and the central limit theorem instead of randomized trials,

permutation tests, and bootstrapping?

* Because when statistics was invented in the 1920s, people
didn’t have computers!

Slide: lain Mathieson



Statistic

This distribution
gives us an estimate
of the uncertainty
in this estimate

i

Resampled data  Resampled statistic

Slide: lain Mathieson



