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* Intro to probability

— Bayes’ Rule



Intro to Probability

e The probability of an event e has a number of epistemological interpretations

e Assuming we have data, we can count the number of times e occurs in the dataset to
estimate the probability of e, P(e).

count(e)

P(e) =

count(all events)

e If we put all events in a bag, shake it up, and choose one at random (called sampling),
how likely are we to get e?
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Intro to Probability

Probability Axioms

1. Probabilities of events must be no less than 0. P(e) > 0 for all e.

2. The sum of all probabilities in a distribution must sum to 1. That is,
P(e1) + P(e2) + ...+ P(e,) = 1.0r, more succinctly,

Z P(e) = 1.

eck
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Intro to Probability

Joint Probability

The probability that two independent events e; and e both occur is given by their product.
P(e; Nes) = P(e; Ney) = P(e1)P(es) when e; Ney = ()
e Intuitively, think of every probability as a scaling factor.

e You can think of a probability as the fraction of the probability space occupied by an
evente;.
o P(€1 /\ €e9) is the fraction of of e1's probability space wherein e5 also occurs.

> So,if P(e1) = 5 and P(es) = +,then P(e2, e1) is a third of a half of the

1 1
><2.

probability space or 3
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Intro to Probability

Joint Probability

N
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Intro to Probability

Conditional Probability

» A conditional probability is the probability that one event occurs given that we take
another for granted.

e The probability of e5 given ey is P(ey | e1).

e This is the probability that eo will occur given that we take for granted that e; occurs.
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Intro to Probability

Conditional Probability

B|A

> 8
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Intro to Probability

Marginal Probability Distributions

Given a discrete joint probability distribution function P(X, Y’), how would we find
P(X)?

e "Marginalize out" the Y (sumoverallally € Y).

e Discrete Case: p(z) = Y P(z,y)
yeY

e Continuous Case: p(z) = [ p(z,y)dy
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Intro to Probability

Marginal Probability Distributions

Example: P(u) = P(u,rain) + P(u,rain)

u rain




Example

* R =rain,U = umbrella

* If P(R) = 20% and P(R,U) = 15%,
what is P(U|R)?



Bayes’ Theorem

- P(4,B) = P(A|B)P(B)
. P(4,B) = P(B|A)P(4)

P(AIB) = P(B|A)P(A)

P(B)



Example

If P(R) = 20% and P(R,U) = 15%,
what is P(U|R)?




Independence
P(4,B) E P(A)P(B)
P(A|B)P(B) = P(A)P(B) _

- not always true!

Conditional Independence
P(A|B,C) = P(A|C)
“A is independent of B given C”
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Outline for today

* |Intro to Bayesian models



Components of a Bayesian Model

* |dentify the evidence, prior, posterior, and
likelihood in the equation below

p(y = k|x) =




Components of a Bayesian Model

* Evidence: this is the data (features) we
actually observe, which we think will help us
predict the outcome we’re interested in



Components of a Bayesian Model

* |dentify the evidence @ posterior, and
likelihood in the equation below

p(y = k) @" —

* Prior: without seeing any evidence (data), what is
our prior believe about each outcome (intuition:
what is the outcome in the population as a
whole?)



Components of a Bayesian Model

* |dentify the evidence, prior, posterior, and

n the equation below

ply = kla) = 2= k

* Likelihood: given an outcome, what is the
probability of observing this set of features?




Components of a Bayesian Model

* Identify the evidence, prior(posterior)and

* Posterior: this is the quantity we are actually
interested in. *Given™ the evidence, what is
the probability of the outcome?



Examples

 Computing the probability an email message
is spam, given the words of the email

* Another example: what is the probability of
Trisomy 21 (Down Syndrome), given the
amount of sequencing of each chromosome?



Bayesian Model for Trisomy 21 (T,,)

Input data are read counts for each chromosome (1,2,...,n):

d1,42," " y{4n :q_)



Bayesian Model for Trisomy 21 (T,,)

Input data are read counts for each chromosome (1,2,...,n):

Goal:

_ P(q [To1) - P(Ts)
P(q |To1) - P(T21) +P(7 |TS) - P(TS)




Bayesian Model for Trisomy 21 (T,,)

Input data are read counts for each chromosome (1,2,...,n):

d1,42," " y{4n :q_)

Goal: Prior probability of T,,

P(q [To1) - P(T51)
P(q |Ts1) - P(To1) +P(7 |TS) - P(TS)




Prior:

P(T,,)

Maternal Age

20
21
22
23
24
25
26
27
28
29
30

Triso 1 All Trisomies
1in 526

1in 1,429 1in 526
1in 1,429 1 in 500
1in 1,429 1 in 500
1in 1,250 1in 476
1in 1,250 1in 476
1in 1,176 1in 476
1in 1,111 1 in 455
1in 1,053 1in 435
1in 417

1in 952 1 in 384

1 in 909 1 in 384
1in 769 1in 323
1in 625 1in 286

1 in 500 1in 238
1in 385 1in 192
1in 294 1in 156
1in 227 1in 127
1in 175 1in 102
1in 137 1in 83
1in 106 1in 66
1in 82 1in 53
1in 64 1in 42
1in 50 1in 33
1in 38 1in 26
1in 30 1in21
1in 23 1in 16
1in 18 1in 13
1in 14 1in 10
1in 8
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Outline for today

* Naive Bayes algorithm



Real-world example of Naive Bayes

“A Comparison of Event Models for Naive Bayes
Text Classification” (6000+ citations!)

http://www.kamalnigam.com/papers/multinomial
-aaaiws98.pdf

Goal: text classification (classify documents into
topics based on the words as features)

95 topics (i.e., K=95)


http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf

Nailve Bayes

* Single example: X = [xl,xz, ...,xp]T
* Multi-class label:  y €{1,2,...,K}

* Goal: Classification § = argmaxy-, g p(y = k|x)

Bayesian Model

P
ply = k|T) = -

canignore



Naive Bayes

f —_— k o X ’x ’x ) ...,.X' — k
p(x|y ) p(\_'}ll 2 3¥ P,‘y ) P(A,B)=P(B)P(A|B)
A

B

B A B

| | |
= p(!xz,\xg, ...,xp"y = k)p(x1|x2, Xy, Y = k)
|
C D

— p(x3, ...,xply = k)p(x2|X3, o Xpr Y = k)
pCts s iy = )



Naive Bayes assumption

Conditional Independence: “feature j is
independent from all other features given label k”

p(x1, x2|y) = p(x1|y)p(x2]%1,¥)
x1 =4 legs

x, = fur assume p(x,|x1,y) = p(x2]y)
y = cat

= p(x1, x2|y) = p(x1[y)0(x2|Y)



Nailve Bayes

p(Ely = k) = p(x,|y = k)p(xp-1|y = k) ... pCe2ly = k) p(x1ly = k)

=[Ti. p(x;ly = k)

Naive Bayes Model

p
p( = kD «p =k | [pogly =10
=1

|

|
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Obtaining p(y = k) & p(x;|y = k)

Estimate based on training data
* 0, = estimate for p(y = k)
* 0 j» = estimate for p(/gcj =v|y = k)\

_ \ class k
feature j value v

Let N, = # of examples with label k, we could
Ng

define 68, = —

What happens if N, =07



Laplace smoothing

* Technique to handle zero probability

. _ Np+1, . Nk+1—L .
8k_n+K' ZHk_ZnH{ n+1{(n_|_K)_1

* Similarly, let N, ; , = # of examples with
feature j = value v and class label k

# of feature values
for feature j



