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Materials adapted from Alvin Grissom II

Intro to Probability
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Intro to Probability

Example: 𝑃(𝑢) = 𝑃 𝑢, 𝑟𝑎𝑖𝑛 + 𝑃(𝑢, 𝑟𝑎𝑖𝑛)

𝑢 𝑟𝑎𝑖𝑛



Example

• 𝑅 = 𝑟𝑎𝑖𝑛, 𝑈 = 𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎

• If 𝑃(𝑅) = 20% and 𝑃 𝑅, 𝑈 = 15%, 
what is 𝑃 𝑈 𝑅 ?



Bayes’ Theorem

• 𝑃 𝐴, 𝐵 = 𝑃 𝐴 𝐵 𝑃(𝐵)

• 𝑃 𝐴, 𝐵 = 𝑃 𝐵 𝐴 𝑃(𝐴)



Example

If 𝑃(𝑅) = 20% and 𝑃 𝑅, 𝑈 = 15%, 
what is 𝑃 𝑈 𝑅 ?



Independence

𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐴 𝑃(𝐵)
not always true!

𝑃 𝐴, 𝐵 = 𝑃(𝐴)𝑃(𝐵)

Conditional Independence

𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴|𝐶

“𝐴 is independent of 𝐵 given 𝐶”





Outline for today

• Intro to probability

– Bayes’ Rule

• Intro to Bayesian models

• Naïve Bayes algorithm



Components of a Bayesian Model

• Identify the evidence, prior, posterior, and 
likelihood in the equation below



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Evidence: this is the data (features) we 
actually observe, which we think will help us 
predict the outcome we’re interested in 

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Prior: without seeing any evidence (data), what is 
our prior believe about each outcome (intuition: 
what is the outcome in the population as a 
whole?)

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Likelihood: given an outcome, what is the 
probability of observing this set of features?

Components of a Bayesian Model



• Identify the evidence, prior, posterior, and 
likelihood in the equation below

• Posterior: this is the quantity we are actually 
interested in. *Given* the evidence, what is 
the probability of the outcome?

Components of a Bayesian Model



Examples

• Computing the probability an email message 
is spam, given the words of the email

• Another example: what is the probability of 
Trisomy 21 (Down Syndrome), given the 
amount of sequencing of each chromosome?



Input data are read counts for each chromosome (1,2,…,n):

Bayesian Model for Trisomy 21 (T21)



Input data are read counts for each chromosome (1,2,…,n):

Goal:

Bayesian Model for Trisomy 21 (T21)



Bayesian Model for Trisomy 21 (T21)

Input data are read counts for each chromosome (1,2,…,n):

Goal: Prior probability of T21



Prior: 

P(T21) 

Maternal Age Trisomy 21 All Trisomies
20 1 in 1,667 1 in 526

21 1 in 1,429 1 in 526

22 1 in 1,429 1 in 500

23 1 in 1,429 1 in 500

24 1 in 1,250 1 in 476

25 1 in 1,250 1 in 476

26 1 in 1,176 1 in 476

27 1 in 1,111 1 in 455

28 1 in 1,053 1 in 435

29 1 in 1,000 1 in 417

30 1 in 952 1 in 384

31 1 in 909 1 in 384

32 1 in 769 1 in 323

33 1 in 625 1 in 286

34 1 in 500 1 in 238

35 1 in 385 1 in 192

36 1 in 294 1 in 156

37 1 in 227 1 in 127

38 1 in 175 1 in 102

39 1 in 137 1 in 83

40 1 in 106 1 in 66

41 1 in 82 1 in 53

42 1 in 64 1 in 42

43 1 in 50 1 in 33

44 1 in 38 1 in 26

45 1 in 30 1 in 21

46 1 in 23 1 in 16

47 1 in 18 1 in 13

48 1 in 14 1 in 10

49 1 in 11 1 in 8



Handout 10



Handout 10



Handout 10



Outline for today

• Intro to probability

– Bayes’ Rule

• Intro to Bayesian models

• Naïve Bayes algorithm



Real-world example of Naïve Bayes

“A Comparison of Event Models for Naive Bayes 
Text Classification” (6000+ citations!)

http://www.kamalnigam.com/papers/multinomial
-aaaiws98.pdf

Goal: text classification (classify documents into 
topics based on the words as features)

95 topics (i.e., K=95)

http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf


Naïve Bayes

• Single example:  Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑝
𝑇

• Multi-class label:  y ∈ {1, 2, … , K}

• Goal: Classification ŷ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘=1,…,𝐾 𝑝 𝑦 = 𝑘 Ԧ𝑥)

Bayesian Model

can ignore



Naïve Bayes 

𝑝 Ԧ𝑥 𝑦 = 𝑘 = 𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑝 𝑦 = 𝑘

= 𝑝 𝑥2, 𝑥3, … , 𝑥𝑝 𝑦 = 𝑘 𝑝(𝑥1|𝑥2, … 𝑥𝑝, 𝑦 = 𝑘)

P(A,B)=P(B)P(A|B)

A B

AB B

= 𝑝 𝑥3, … , 𝑥𝑝 𝑦 = 𝑘 𝑝 𝑥2 𝑥3, … , 𝑥𝑝, 𝑦 = 𝑘

𝑝(𝑥1|𝑥2, … 𝑥𝑝, 𝑦 = 𝑘)

C D



Conditional Independence: “feature j is 
independent from all other features given label k”

Naïve Bayes assumption

𝑝 𝑥1, 𝑥2 𝑦 = 𝑝 𝑥1 𝑦 𝑝(𝑥2|𝑥1, 𝑦)

𝑥1 = 4 legs

𝑥2 = fur

𝑦 = cat
assume  𝑝 𝑥2 𝑥1, 𝑦 = 𝑝(𝑥2|𝑦)

⇒ 𝑝 𝑥1, 𝑥2 𝑦 = 𝑝 𝑥1 𝑦 𝑝(𝑥2|𝑦)



Naïve Bayes 

𝑝 Ԧ𝑥 𝑦 = 𝑘 = 𝑝 𝑥𝑝 𝑦 = 𝑘 𝑝 𝑥𝑝−1 𝑦 = 𝑘 …𝑝 𝑥2 𝑦 = 𝑘 𝑝 𝑥1 𝑦 = 𝑘

= ς𝑗=1
𝑝

𝑝(𝑥𝑗|𝑦 = 𝑘)

Naïve Bayes Model

𝑝 𝑦 = 𝑘 Ԧ𝑥 ∝ 𝑝(𝑦 = 𝑘)ෑ

𝑗=1

𝑝

𝑝(𝑥𝑗|𝑦 = 𝑘)

proportional to



Estimate based on training data

• 𝜃𝑘 = estimate for 𝑝 𝑦 = 𝑘

• 𝜃𝑘,𝑗,𝑣 = estimate for 𝑝(𝑥𝑗 = 𝑣|𝑦 = 𝑘)

Obtaining 𝑝(𝑦 = 𝑘) & 𝑝(𝑥𝑗|𝑦 = 𝑘)

feature j
class k

value v

Let Nk = # of examples with label k, we could 

define 𝜃𝑘 =
𝑁𝑘

𝑛

What happens if Nk = 0? 



• Technique to handle zero probability

• 𝜃𝑘 =
𝑁𝑘+1

𝑛+𝐾

Laplace smoothing

• Similarly, let Nk,j,v = # of examples with 
feature j = value v and class label k

𝜃𝑘,𝑗,𝑣 =
𝑁𝑘,𝑗,𝑣 + 1

𝑁𝑘 + |𝑓𝑗|
# of feature values 
for feature j

; σ𝜃𝑘 = σ
𝑁𝑘+1

𝑛+𝐾
=

1

𝑛+𝐾
𝑛 + 𝐾 = 1


