CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Admin

Sit somewhere new

Lab 3 due tonight at midnight

- Lab 4 posted (due next Tuesday)
 - pair-programming required, different partner

CAMPUS READ 2025

A special book talk and community discussion with marine biologist, policy expert, and writer, Dr. Ayana Elizabeth Johnson.

RSVP here

Tuesday, September 30

7:00 p.m.

Roberts Hall, Marshall Auditorium

A student-only book signing will be held in Lutnick 200 from 6:15–6:45!

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Stochastic Gradient Descent for Linear Regression

Key Idea: take the derivative of one datapoint at a time and use that to update w

```
set w = 0 vector
while cost J(w) still changing (or max iter reached):
    shuffle data points
    for i = 1...n:
        w <- w - alpha(derivative of J(w) wrt xi)
        store J(w)</pre>
```

Mini-quiz for linear regression

For each of the following terms/descriptions, write out the corresponding equation:

- 1) Linear regression model
- 2) Linear regression cost function
- 3) Gradient of cost function wrt one datapoint
- 4) Gradient descent weight vector update

Mini-quiz for linear regression

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Binary classification examples

- Transactions that indicate credit card fraud
- Accounts that are bots
- Detecting which scans show tumors
- Prenatal test for Down's Syndrome
- Finding genes under natural selection
- Regions of the environment that contains the object the robot is searching for

Introduction to Classification

Introduction to Classification

Handout 7

Handout 7

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Goals of Evaluation

 Think about what metrics are important for the problem at hand

Compare different methods or models on the same problem

Common set of tools that other researchers/users can understand

Training and Testing

(high-level idea)

- Separate data into "train" and "test"
 - -n = num training examples
 - -m = num testing examples
- Fit (create) the model using training data
 - e.g., sea_ice_1979-2012.csv
- Evaluate the model using testing data
 - e.g., sea_ice_2013-2020.csv

Predicted class

	Negative	Positive
Negative	True negative (TN)	False positive (FP)
Positive	False negative (FN)	True positive (TP)

True

class

Predicted class

	Negative	Positive	
Negativ True	True negative e (TN)	False positive (FP) "false alarm"	N (total number of true negatives)
class	False negative (FN) "miss"	True positive (TP)	P (total number of true positives)
	N* (what we said was negative)	P* (what we said positive "flagged"	

Predicted class

Predicted class

Predicted class

Predicted class

False Positive Rate:

$$FP/(TN+FP) = FP/N$$

• Precision: of all the "flagged" examples, which ones are actually relevant (i.e., positive)?

(Purity)

 <u>Recall</u>: of all the relevant results, which ones did I actually return?

(Completeness)

- Precision?
- Recall?

- Precision = TP/(FP+TP) = 3/5
- Recall?

- Precision = TP/(FP+TP) = 3/5
- Recall = TP/(FN+TP) = 3/6

- Precision = 5/16
- Recall = 5/6

Outline for today

Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation

- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves Next time!