CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2025

Admin

- Sit somewhere new!
- Lab 1 is due tonight at midnight
- Lab 2 posted (due next Tuesday)
 - This lab will be done in pairs, please find a partner

Pair Programming

- One person is driver (at the keyboard)
- One person is navigator
- Switch every 30 min!
- Always be working on the assignment together
- No "divide and conquer"
- Make sure to push frequently and pull if there

have been any changes

Outline for today

Data representation and featurization

Introduction to modeling

Why are models useful?

Linear models

Outline for today

Data representation and featurization

Introduction to modeling

Why are models useful?

Linear models

Tennis Data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis (y)
$oldsymbol{x}_1$	Sunny	Hot	High	Weak	No
$ oldsymbol{x}_2 $	Sunny	Hot	High	Strong	No
$ x_3 $	Overcast	Hot	High	Weak	Yes
$oldsymbol{x}_4$	Rain	Mild	High	Weak	Yes
$oldsymbol{x}_5$	Rain	Cool	Normal	Weak	Yes
$ $ $oldsymbol{x}_6$	Rain	Cool	Normal	Strong	No
$ x_7 $	Overcast	Cool	Normal	Strong	Yes
$ $ $oldsymbol{x}_8$	Sunny	Mild	High	Weak	No
$ x_9 $	Sunny	Cool	Normal	Weak	Yes
$ oldsymbol{x}_{10} $	Rain	Mild	Normal	Weak	Yes

Data from Machine Learning by Tom Mitchell (Table 3.2)

- Input or features: outlook, temp, humidity, wind
- Output or "label": play tennis (yes or no)

Sea Ice data (Lab 2)

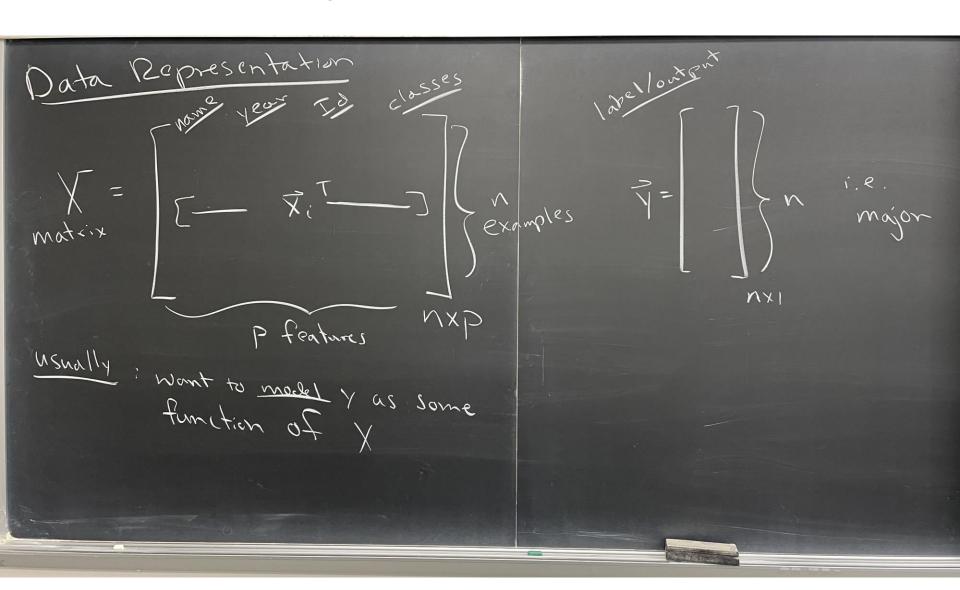
Year Sea Ice Extent*

1996 7.88 1997 6.74 6.56 1998 6.24 1999 6.32 2000 6.75 2001 2002 5.96 6.15 2003 6.05 2004 2005 5.57 5.92 2006 2007 4.3 2008 4.63

- Input or **feature**: year
- Output or "label": sea ice extent

*Arctic sea ice extent (1,000,000 km²)

Data Representation Notation



Feature Terminology

- Features: feature names
 - shape
 - sea ice extent

- Feature values: what values are possible
 - {circle, square, triangle}
 - all non-negative values

• Feature vector: values for a particular example/data point

$$- \mathbf{x} = [x_1, x_2, x_3, ..., x_p]$$

Featurization: make numerical

• Real-valued features get copied directly.

Duame, Chap 3

- Binary features become 0 (for false) or 1 (for true).
- Categorical features with V possible values get mapped to V-many binary indicator features.

Q: what about features that might already be on a spectrum (e.g. sunny, rain, overcast)?

· Regression; yER (continuous) YE {0,13 · Binary classification : YESI, Z, ... K} (image recognition) · Multi-class classification Numidity E & normal, high & Ontlook E & Sunny, overcost, rain) N=38 A

Featurization: make numerical

Q1: *n*=10, *p*=4

Day	Outlook	Temperature	Humidity	Wind	PlayTennis (y)
x_1	Sunny	Hot	High	Weak	No
$ x_2 $	Sunny	Hot	High	Strong	No
$ x_3 $	Overcast	Hot	High	Weak	Yes
$ m{x}_4 $	Rain	Mild	High	Weak	Yes
$ x_5 $	Rain	Cool	Normal	Weak	Yes
$ x_6 $	Rain	Cool	Normal	Strong	No
$ x_7 $	Overcast	Cool	Normal	Strong	Yes
$ x_8 $	Sunny	Mild	High	Weak	No
$ x_9 $	Sunny	Cool	Normal	Weak	Yes
$oldsymbol{x}_{10}$	Rain	Mild	Normal	Weak	Yes

Q2

Sunny: {0,1}

Overcast: {0,1} Rain: {0,1}

 \boldsymbol{x}_1

Temperature: {0, 1, 2} (Cool, Mild, Hot)

Humidity: {0,1} (Normal, High) Wind {0,1} (Weak, Strong)

Data from Machine Learning by Tom Mitchell (Table 3.2)

	1
()	≺
\sim	, •

Sunny	Overcast	Rain	Temp	Humidity	Wind
1	0	0	2	1	0

Outline for today

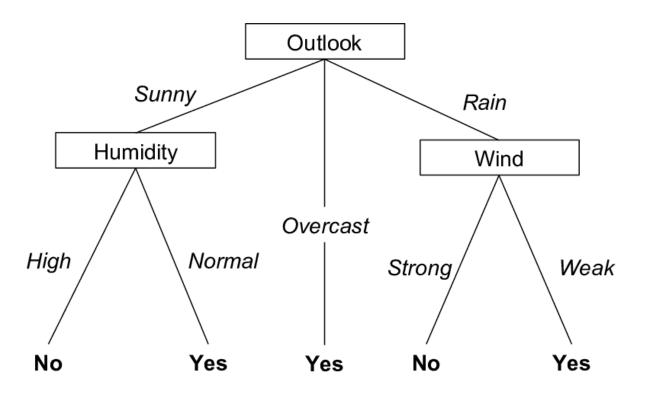
Data representation and featurization

Introduction to modeling

Why are models useful?

Linear models

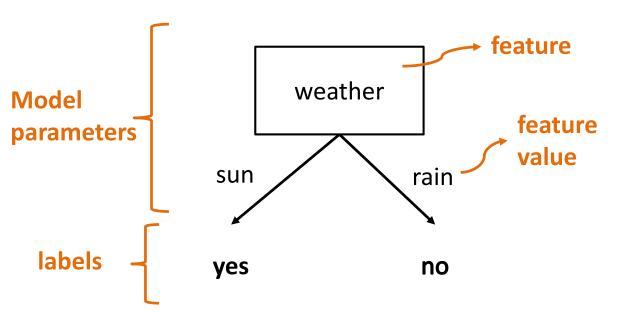
Example of a model



- Each internal node: one feature
- Each branch from node: selects one value of the feature
- Each leaf node: predict y

Model Examples

1) Decision Tree

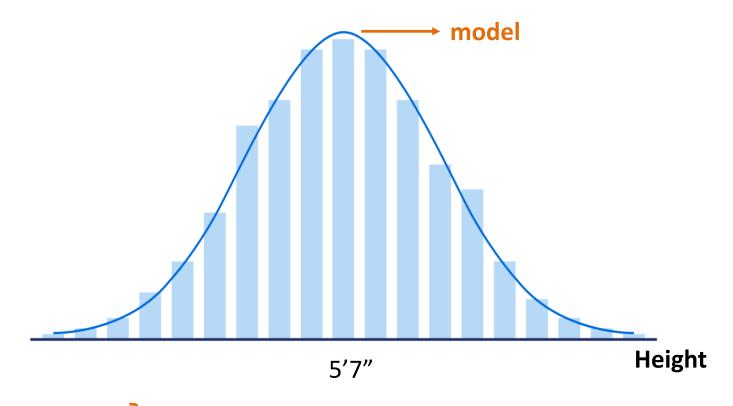


Data

weather	tennis
sun	yes
rain	no
rain	no
sun	yes
sun	no

Model Examples

2) Normal distribution

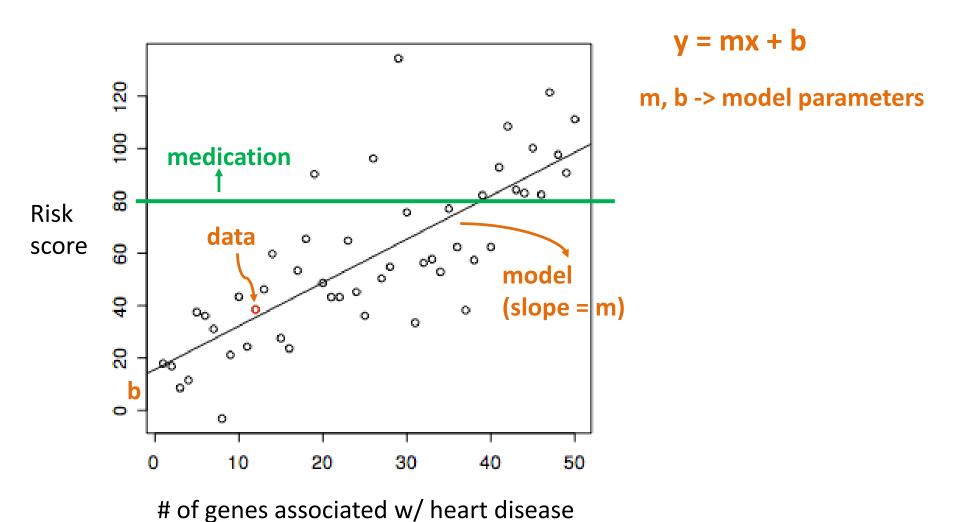


mean: 5'7" variance: 2"

Model

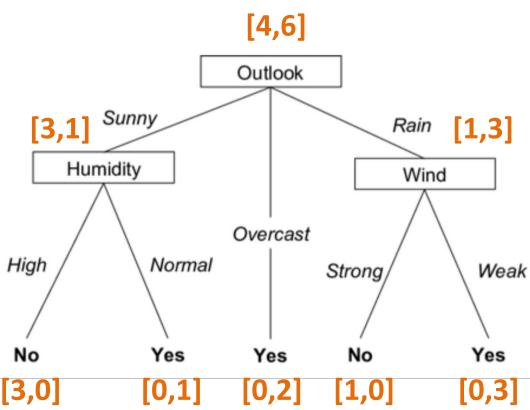
Model Examples

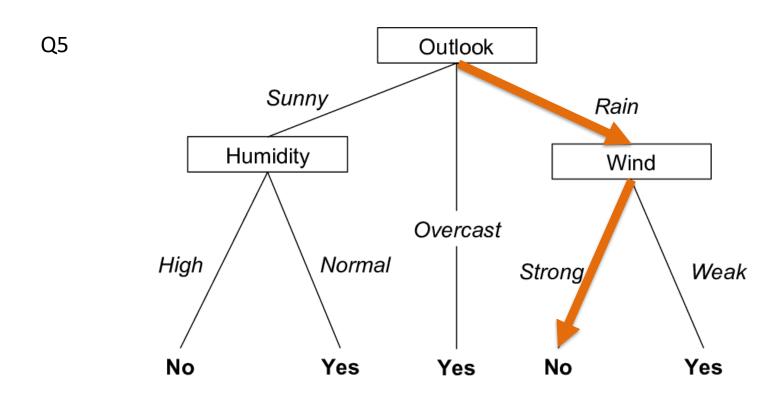
3) Linear models



Q4

In the model below, the children of each node divide the data into partitions. Label each node (both internal nodes and leaves) with the counts of "No" and "Yes" labels based on the partition. For example, the counts for the node labeled *Outlook* would be [4,6]. Does this model perfectly classify all examples?





	Outlook	Temp	Humidity	Wind
(test example) x =	Rain	Hot	High	Strong

 $y_{pred} = No$

Outline for today

Data representation and featurization

Introduction to modeling

Why are models useful?

Linear models

Why are models useful?

Understand/explain/interpret the phenomena

Predict outcomes for future examples

What are the most important features?

X

e Size

Color	Shape	Size	
red	square	big	
blue	square	big	
red	circle	small	
blue	square	small	
red	circle	big	

Y

Likes toy?	
+	
+	
-	
-	
+	

What are the most important features?

X

Y

Color	Shape	Size
red	square	big
blue	square	big
red	circle	big
blue	square	big
red	circle	big

Likes toy?
+
+
-
-
+

Outline for today

Data representation and featurization

Introduction to modeling

Why are models useful?

Linear models

Linear Models mode = W. + W, X=9 * features how good is our model? residuals Goals Prediction 1) describe linear dependence. Qverall Predict output given Minimi Ze new data

RSS or SSE

RSS : residual sum of squares SSE: sum of squared errors

Goals of fitting a linear model

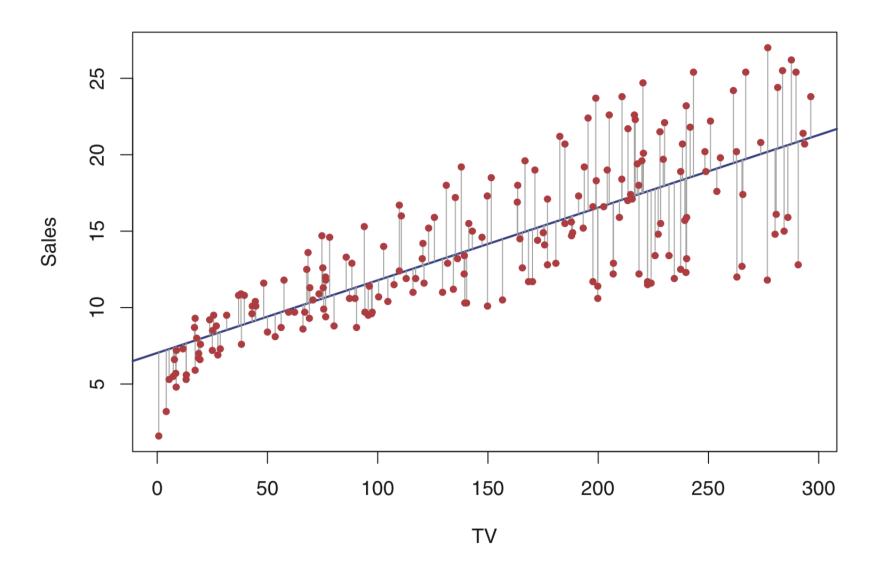
1) Which of the features/explanatory variables/predictors (x) are associated with the response variable (y)?

2) What is the relationship between x and y?

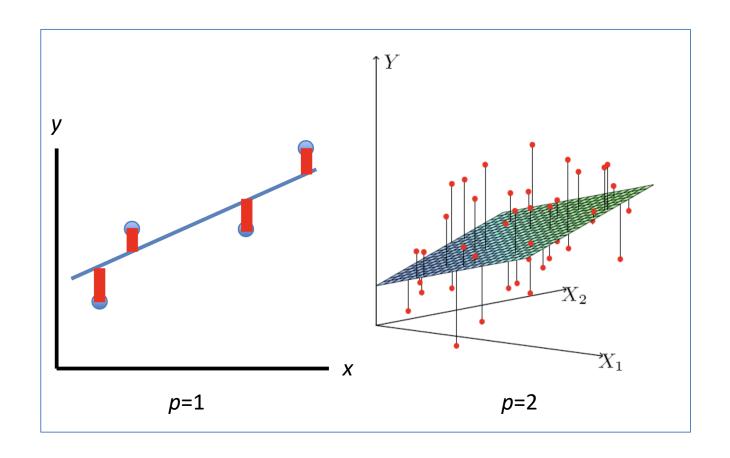
3) Can we (accurately) predict y given a new x?

4) Is a linear model enough?

Example: predict sales from TV advertising budget



Linear model with 1 or 2 features



Linear Regression

Output (y) is continuous, not a discrete label

 <u>Learned model</u>: *linear function* mapping input to output (a *weight* for each feature + *bias*)

 Goal: minimize the RSS (residual sum of squares) or SSE (sum of squared errors)

Maybe a linear model is not enough

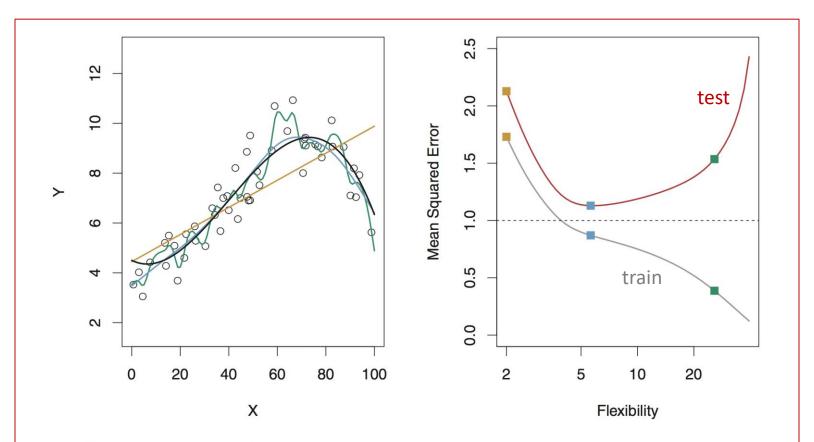


FIGURE 2.9. Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line (orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test MSE (red curve), and minimum possible test MSE over all methods (dashed line). Squares represent the training and test MSEs for the three fits shown in the left-hand panel.