
CS 260: Foundations of Data Science

Prof. Thao Nguyen

Fall 2025

Materials by Sara Mathieson



Admin

• Roster should hopefully be finalized by end of week

• Lab 1 due Tuesday night

• TA hours begin tonight (8-10pm in H204)



PM



Note-cards from Tuesday

• Practice problems and group work: many people 
mentioned these – will try to have every class

• Visualizations and analogies: several people 
mentioned these – I will try!

• Access to myself and TAs: some people 
mentioned this – hours are on the webpage

– Can schedule meeting with me outside office hours



Introductions

(if you could be a data scientist for any type of data, what 
would it be?)



• Largely dependent on the number of data points and 
data structures in use

• Constant time operations (O(1)): accessing values in 
an array, dictionary, etc.

• Iterating through n items: O(n)

• Sequential steps: add their runtime

• Nested operations: multiply their runtime

• Big-O notation: ignore scalars and small terms, 
assume worst case

Algorithm Runtime/Big-O notation Review



• What is the big-O runtime of:

– Dividing a number n by 10 until we get 1

– Guessing an n-digit password

Big-O notation Practice

https://www.geeksforgeeks.org/



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

dot = Circle(Point(x,y), r)



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

• We can access the instance’s data using methods

r = dot.get_radius()

dot = Circle(Point(x,y), r)



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

• We can access the instance’s data using methods

• We can use/modify class instances using methods

r = dot.get_radius()

dot = Circle(Point(x,y), r)

dot.move(dx,dy)



Motivation for classes: LOLs

• List-of-lists let us keep track of things that 

should be “together”, but they get 

cumbersome to modify:
Type of pie

Number of slices



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract

• Encapsulated (student is represented as one 

thing, a list), but not abstract



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract

• Encapsulated (student is represented as one 

thing, a list), but not abstract

• Both abstract and encapsulated

Should be:
get_name()
get_year()



• Interface (how you interact with something) is 

consistent even if the internal details change.

1) If you change the engine in your car, you still drive it 

the same way – don’t need to know how the engine 

works.

2) In online shopping you have a “Cart”, which is an 

abstract concept and is roughly the same across sites. 

Probably represented as a list underneath but user 

doesn’t need to know.

Advantages of encapsulation/abstraction



“Pie” class example



“Pie” class example

better to use: f“{self.flavor} pie has {self.slices} left!”



“Pie” class example



TwitterUser class



Handout 2

• Find and work with a partner



Recap Die class

• Defining the Constructor: builds an instance of 

the class (self), and initializes all instance 

variables (self.xxx)



Recap Die class

• Defining the Constructor: builds an instance of 

the class (self), and initializes all instance 

variables (self.xxx)

• Using the Constructor: assign the new object to a 

variable, making the “self” placeholder a 

concrete instance



• Defining Methods: always use “self” as the first 

argument (placeholder for the instance). Getters are 

a type of method that return instance variables or 

their derivatives.

Recap Die class



• Defining Methods: always use “self” as the first 

argument (placeholder for the instance). Getters are 

a type of method that return instance variables or 

their derivatives.

• Using Methods: instance.method(…), don’t use self

Recap Die class



• Defining the __str__ method: no print(..) statements! 

Build and return a single string. (no arguments 

besides self)

Recap Die class



• Defining the __str__ method: no print(..) statements! 

Build and return a single string. (no arguments 

besides self)

• Using the __str__ method: simply call print(instance)!

Recap Die class



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Example of reading in data

colleges.txt



File reading demo



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Numpy

• Numerical Python

• Designed for fast computation on arrays

• Implemented in C underneath

• pip3 install numpy (on the terminal) OR

python3 –m pip install numpy



A B

np.concatenate((A,B), axis=0)

A

B

np.concatenate((A,B), axis=1)

A B

ax
is

=
0

axis=1

must match along axis 1

must match 
along axis 0

Numpy concatenation



A
C

np.concatenate((A,C), axis=0)

A

np.concatenate((A,C), axis=1)

A

ax
is

=
0

axis=1

must match along axis 1

Error: must 
match along 
axis 0!

C

C

Numpy concatenation



Numpy concatenation example



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Data Representation


