CS 260: Foundations of Data Science

Prof. Thao Nguyen
Fall 2025

HAVE RFORD

COLLECGE

Materials by Sara Mathieson

Admin

* Roster should hopefully be finalized by end of week

* Lab 1 due Tuesday night

* TA hours begin tonight (8-10pm in H204)

Linux Boot
Camp

forCS
Courses ‘

New to Linux?
Get the basics under your belt!

MONDAY, 09/08/2025, 6 — 7:30
WEDNESDAY, 09/10/2025, 6 — 7:30
FRIDAY, 09/12/2025, 6 — 7:30 PM

All in H110

Note-cards from Tuesday

* Practice problems and group work: many people
mentioned these — will try to have every class

* Visualizations and analogies: several people
mentioned these — | will try!

* Access to myself and TAs: some people
mentioned this — hours are on the webpage

— Can schedule meeting with me outside office hours

Introductions

(if you could be a data scientist for any type of data, what
would it be?)

Algorithm Runtime/Big-O notation Review

* Largely dependent on the number of data points and
data structures in use

e Constant time operations (O(1)): accessing values in
an array, dictionary, etc.

* lterating through n items: O(n)
* Sequential steps: add their runtime
* Nested operations: multiply their runtime

* Big-O notation: ignore scalars and small terms,
assume worst case

Big-O notation Practice

 What is the big-O runtime of:
— Dividing a number n by 10 until we get 1
— Guessing an n-digit password

Number of Operations
2
=
Complexity

0(1)

v
o o
- =
= 0

«Q
2
<

<

Input Data Size

Outline for today
Object-oriented programming (OOP) in Python
Reading in data in Python
Numerical Python (numpy)

If time: begin data representation

Outline for today

* Object-oriented programming (OOP) in Python

Classes in Python represent the same idea
as classes in Java

« Classes allow us to encapsulate common data
structures and actions so we don’t have to define them
over and over again

 Example: say we have two classes: Point and Circle

Classes in Python represent the same idea
as classes in Java

* Classes allow us to encapsulate common data
structures and actions so we don’t have to define them
over and over again

« Example: say we have two classes: Point and Circle
« We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

Classes in Python represent the same idea
as classes in Java

Classes allow us to encapsulate common data
structures and actions so we don’t have to define them
over and over again

Example: say we have two classes: Point and Circle
We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

We can access the instance’s data using methods
r = dot.get_radius()

Classes in Python represent the same idea
as classes in Java

Classes allow us to encapsulate common data
structures and actions so we don’t have to define them
over and over again

Example: say we have two classes: Point and Circle
We can create a new instance of a class using the

constructor
dot = Circle(Point(x,y), r)

We can access the instance’s data using methods
r = dot.get_radius()
We can use/modify class instances using methods

® O

dot.move(dx,dy)

Motivation for classes: LOLs

 List-of-lists let us keep track of things that
should be “together”, but they get
cumbersome to modify:

Number of slices

Type of pie \

>>> pie_lst = [["apple",8], ["cherry",8], ["chocolate",8]]
>>>

>>> pie_1st[2][1] —= 1

>>>

>>> pie_lst

[['apple', 8], ['cherry', 8], ['chocolate', 711

Motivation for classes: encapsulation and abstraction

* Neither encapsulated (data for one student is
spread over multiple objects), nor abstract

name_lst = ["Kendre", "Rohan", "Ayaka", '"Maleyah"]
year_lst = [2020, 2021, 2020, 2021]

name = name_lst[0]
year = year_1lst[0]

Motivation for classes: encapsulation and abstraction

* Neither encapsulated (data for one student is
spread over multiple objects), nor abstract

name_lst = ["Kendre", "Rohan", "Ayaka", '"Maleyah"]
year_lst = [2020, 2021, 2020, 2021]

name = name_lst[0]
year = year_1lst[0]

« Encapsulated (student is represented as one
thing, a list), but not abstract
kendre = ["Kendre", 2020, ["cs35","actl","relg43","spanl"]]

name = kendre[0]
year = kendre[1]

Motivation for classes: encapsulation and abstraction

* Neither encapsulated (data for one student is
spread over multiple objects), nor abstract

name_lst = ["Kendre", "Rohan", "Ayaka", '"Maleyah"]
year_lst = [2020, 2021, 2020, 2021]

name = name_lst[0]
year = year_1lst[0]

« Encapsulated (student is represented as one
thing, a list), but not abstract

kendre = ["Kendre", 2020, ["cs35","actl","relg43","spanl"]]
name = kendre[0]
year = kendre[1]

« Both abstract and encapsulated

Should be: kendre = Student("Kendre", 2020)
A Il name = kendre.getName()
S Year = kendre.getYear()

Advantages of encapsulation/abstraction

* Interface (how you interact with something) is
consistent even if the internal details change.

1) If you change the engine in your car, you still drive it
the same way — don’t need to know how the engine
Works.

2) In online shopping you have a “Cart”, which is an
abstract concept and is roughly the same across sites.
Probably represented as a list underneath but user
doesn’t need to know.

“Pie” class example

class Pie: # class names should be capitalized

must use init for the constructor
def init_ (self, flavor):

def

def

"""Constructor for the Pie class.”""

in the constructor, define the data (i.e. self.data)
data are called: attributes or instance variables
self.flavor = flavor

self.slices = 8

get_slices(self):
"""Return the number of slices left (int)."""
return self.slices

get_flavor(self):
"""Return the flavor of the pie (str)."""
return self.flavor

“Pie” class example

def serve(self):
"MUTf there is at least one slice left, reduce the number of slices.""
if self.slices > 0:
print("Here is a slice of %s pie!" % self.flavor)
self.slices =1
else:
print("Sorry, there is no more %s pie!" % self.flavor)

def __str_ (self):
"""Return a string representation of a pie."""
s = "%s pie has %i slices left!" % (self.flavor, self.slices)

return s \

\

better to use: f“{self.flavor} pie has {self.slices} left!”

“Pie” class example

def main():

piel = Pie("apple")

print(piel)

for i in range(12): apple pie has 8 slices left!

piel.serve() :ere ;s a s{ice o: app{e p;ei

print(piel.get_slices()) HZ;Z 12 g 2112: gf ZEEIZ giZi

print(piel.get_flavor()) Here is a slice of apple pie!

print(piel) Here is a slice of apple pie!
Here is a slice of apple pie!
Here 1s a slice of apple pie!

pie2 = Pie("pumpkin") , , ,
Here is a slice of apple pie!

prlnt(pleZ) Sorry, there 1is no more apple pie!
pie2.serve() Sorry, there is no more apple pie!
print(pie2) Sorry, there is no more apple pie!
Sorry, there is no more apple pie!
Y
apple

apple pie has 0 slices left!
pumpkin pie has 8 slices left!
Here is a slice of pumpkin pie!
pumpkin pie has 7 slices left!

TwitterUser class

class TwitterUser: # only time camel case 1s okay!

constructor

def __init__ (self, name, curr_following, curr_followers):
self.name = name
self.following = curr_following
self.followers = curr_followers

def add_follower(self): # always have to use self!
self.followers += 1
TODO we could make this better by creating a list of followers who
are themselves instances of TwitterUser

def follow(self):
self.following += 1

def __str__(self):
must return a string, not print a string!
return "name: %s\nnum following: %i\nnum followers: %i" % (self.name, \
self.following, self.followers)

Handout 2

* Find and work with a partner

Recap Die class

Defining the Constructor: builds an instance of
the class (self), and initializes all instance
variables (self.xxx)

class Die:

def (self, num_sides):

"""Construct a new die with the given number of sides.™""
.sides = num_sides
.value =1

Recap Die class

» Defining the Constructor: builds an instance of
the class (self), and initializes all instance
variables (self.xxx)

class Die:

def (self, num_sides):

"""Construct a new die with the given number of sides.™""
.sides = num_sides
.value =1

* Using the Constructor: assign the new object to a
variable, making the “self” placeholder a
concrete instance

def main():

diel = Die(8)
die2 = Die(8)

Recap Die class

« Defining Methods: always use “self” as the first
argument (placeholder for the instance). Getters are
a type of method that return instance variables or

their derivatives. IEFEEIEEsG)

"migetter for the die's current value."""
return .value

def roll(self):
"""Choose a new random value for the die, i.e. roll it."""

.value = random.randrange(1, .sides+1)

Recap Die class

« Defining Methods: always use “self” as the first

argument (placeholder for the instance). Getters are
a type of method that return instance variables or
their derivatives. [EEEuEEt]

"migetter for the die's current value."""
return .value

def roll(self):
"""Choose a new random value for the die, i.e. roll it."""
.value = random.randrange(1, .sides+1)

« Using Methods: instance.method(...), don’t use self

same = False

while not same:
diel.roll()
die2.roll()
print(diel)
print(die2)
print()

same = (diel.getValue() == die2.getValue())

Recap Die class

« Defining the str method: no print(..) statements!
Build and return a single string. (no arguments
besides self)

def (self):
"""String representation of the die (with current value)."""

return "%d-sided die, current value: %d" % (.Sides, .value)

Recap Die class

« Defining the str method: no print(..) statements!
Build and return a single string. (no arguments
besides self)

def (self):
"""String representation of the die (with current value)."""

return "%d-sided die, current value: %d" % (.Sides, .value)

* Using the __str method: simply call print(instance)!

print(diel)
print(die2)

Outline for today

* Reading in data in Python

c_file = open("colleges.txt", 'r')

enroll_1st = []

for line in c_file:

tokens = line.split() Amherst 1792
Bates 1792
‘Bowdoin 1806
name = tokens[0] BrynMawr 1709
enroll = int(tokens[1]) 'Colby 1815
enroll_lst.append(enroll) colleges.txt Davidson 1950

| Haverford 1290
c_file.close() ‘Middlebury 2526

Pomona 1663
'Reed 1411
Smith 2600
. . Swarthmore 1620
Example of reading in data vassar 2ase
Wellesley 2474
‘Williams 2099

File reading demo

import csv
import numpy as np

1) read line by line
fb_file = open("data/facebook_users.csv", 'r') # 'r' for read mode
for line in fb_file:
tokens = line.split(",") # split on comma
year = int(tokens[0])
num_users = int(tokens[1])
print(year, num_users)
fb_file.close()

2) csv reader
with open("data/facebook_users.csv", 'r') as fb_file:
csv_reader = csv.reader(fb_file)
for line in csv_reader:
print(line)

3) load into numpy array
data = np.loadtxt("data/facebook_users.csv", dtype=int, delimiter=",")

print(data)

Outline for today

* Numerical Python (numpy)

Numpy

Numerical Python
Designed for fast computation on arrays
Implemented in C underneath

pip3 install numpy (on the terminal) OR
python3 —m pip install numpy

Numpy concatenation

-

np.concatenate((A,B), axis=0) np.concatenate((A,B), axis=1)

axis=1

A B must match
along axis O

axis=0

must match along axis 1

Numpy concatenation

np.concatenate((A,C), axis=0) np.concatenate((A,C), axis=1)

axis=1
Error: must
match along
axis 0!

axis=0

must match along axis 1

Numpy concatenation example

>>> a_arr
a =1[[3,4,21,1[7,8,91,[2,1,01] array([[3, 4, 2],
b = [[4,9,71,[3,0,11,[3,8,41] (7, 8, 91,
[2, 1, ©011])
a_arr = np.array(a) >>> b_arr
b_arr = np.array(b) array([[4, 9, 71,
[3, 0, 1],
[3, 8, 4]11])
>>> many_rows = np.concatenate((a_arr,b_arr), axis=90)
>>>
>>> many_Yows S
array([[3, 4, 21, >>> many_rows.shape
[7, 8, 91, (6, 3)
[2, 1, 0], >>> many_cols.shape
[4, 9, 71, (3, 6)
[3, 0, 11,
[3, 8, 4]1]1)

>>> many_cols = np.concatenate((a_arr,b_arr), axis=1)

>>>

>>> many_cols

array([[3, 4, 2, 4, 9,
[7, 8, 9, 3, 9,
[2, 1, o0, 3, 8,

NP N
et e L
el ™~ -

Outline for today

* |f time: begin data representation

Data Representation

' OO (Zepres € v st
G \N’y \V /\y} (’\/

—

