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Admin

* Lab 8 grades & feedback posted on Moodle

* End-of-semester survey (link on Piazza)



Outline for today

e Neural networks



Adapted from: “Know Your Meme”

MACHINE LEARNING
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As for the derivative with respect to b, we obtain
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If we take the definition of w in Equation (9) and plug that back intq
Lagrangian (Equation 8), and simplify, we get
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But from Equation (10), the last term must be zero, so we obtain ’
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>>> from sklearn import svm What |
>>> import tensorflow as tf RRCEIALE
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Biological Inspiration for
Neural Networks
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Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/



Goal: learn from complicated inputs
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Image: Labeled Faces in the Wild (UMass)



ldea: transform data into lower dimension
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Multi-layer networks = “deep learning”
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History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”



number of articles

Number of papers that mention
“deep learning” over time
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Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss



Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture
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Layer Output

o H(l) = a (W(l)X + l_?)(l)) p, = # of nodes in layer 1

1 1

activation function p;Xp pXxn p; X1

!
P1Xn

¢ H(Z) = a (W(Z)H(l) + 1_9)(2))

¢+ 9 =a(WOH® +p®)



Activation Functions



Option 1: sigmoid function

* |nput: all real numbers, output: [0, 1]
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Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]

tanh(z) =
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Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, z) /

....................




Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

e (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/
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Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient
(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/
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Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelU

(-) When input becomes very positive or very negative,
gradient approaches 0O (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient
(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can have no signal if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/
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Goal: find a function between input and output
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First idea: one hidden layer
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Second idea: more hidden layers (“deep” learning)
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Another idea: Flatten pixels of image
into a single vector
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Detour to autoencoders
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Detour to autoencoders
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Detour to autoencoders
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Use unsupervised pre-training to find a function
from the input to itself
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Hidden units can be interpreted as edges
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Now: throw away reconstruction and input
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Now: throw away reconstruction and input
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Then repeat the entire process for each layer
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Then repeat the entire process for each layer




Then repeat the entire process for each layer




Then repeat the entire process for each layer
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In the last layer, use the outputs (supervised)
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Finally, “fine-tune” the entire network!
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Takeaways

* As the number of parameters grows, a non-convex
function often has more and more local minima

e Starting at a “good” point is crucial!
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Takeaways

* Unsupervised pre-training uses latent structure
in the data as a starting point for weight
initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)



Weight initialization

* We still have to initialize the pre-training

* All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the
weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values



Mini-batches

e So far in this class, we have considered
stochastic gradient descent, where one data
point is used to compute the gradient and
update the weights

* On the flipside is batch gradient descent,
where we compute the gradient with respect
to all the data, and then update the weights

A middle ground uses mini-batches of
examples before updating the weights



Notes about scores and softmax

* The output of the final fully connected layer is a vector
of length K (number of classes)



Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

Then we apply cross-entropy loss to these probabilities



Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale



Motivation for moving away from FC architectures

* For a 32x32x3 image (very small!) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale

* Fully connected networks do not explicitly
account for the structure of an image and the
correlations/ relationships between nearby

pixels



ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth



ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

 For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
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ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

J

w{|



ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

The output layer is 1x1xC, where Cis the number of
classes (10 for CIFAR-10)
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