CS 260: Foundations of Data Science

Prof. Thao Nguyen
Fall 2024

HAVE RFORD

COLLECE

Materials by Sara Mathieson

Admin

* Lab 8 grades & feedback posted on Moodle

* End-of-semester survey (link on Piazza)

Outline for today

e Neural networks

Adapted from: “Know Your Meme”

MACHINE LEARNING

Vul(w, b a)=w Z(\ yWzd =

i=1

This implies that
m
w = Zn-,‘ym:r‘”)‘
i=1

As for the derivative with respect to b, we obtain

8 m "
d‘,E(u bya)= gugy =0.

If we take the definition of w in Equation (9) and plug that back intq
Lagrangian (Equation 8), and simplify, we get

m m m
1
L(w,b, o) = E &= E y Wy ey 0 (2T — b E ay®,

i=1 ij=1 i=1

But from Equation (10), the last term must be zero, so we obtain ’
R :
A
other computer
scientists think | do

What |
think I do

>>> from sklearn import svm What |
>>> import tensorflow as tf RRCEIALE

What mathematicians think | do

Biological Inspiration for
Neural Networks

impulses carried

toward cell body
branches

of axon

impulses carried
away from cell body

axon
terminals

Lo wo

*@® synapse
axon from a neuron
. WoTo

cell body

T (Zw,-z,- +b>
Zwimi +b :

output axon

activation
function

WoT9

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/

Goal: learn from complicated inputs

©

a2 s T ? L) e
VPN |

i >

2
‘ﬁa Y, | smiling?
“

Y3 | identity?

parameters

input data

Image: Labeled Faces in the Wild (UMass)

ldea: transform data into lower dimension

Y, | glasses?

Y, | smiling?

1dentity?

parameters

input data

Multi-layer networks = “deep learning”

1dentity?

parameters
hidden

layer 2

History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”

number of articles

Number of papers that mention
“deep learning” over time

1000}
800 2006: Hinton and Salakhutdinov
make a break-through in
initializing deep learning networks
600 |
400
200}
1%80 1985 1990 1995 2000 2005 2010

year

Big picture for today

* Neural networks can approximate any function!

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

Big picture for today

* Neural networks can approximate any function!

* For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

* We will train our network by asking it to minimize
the loss between its output and the true output

Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss

Fully Connected Neural Network Architecture
N
Ol - S50
A y/

Y .
@ -

Fully Connected Neural Network Architecture

Fully Connected Neural Network Architecture

(1)

Fully Connected Neural Network Architecture

° w®)
@ Wl(i) H(Z) (2) 5 (1) (2)
e“’“»(/ gw P 44 pP

Fully Connected Neural Network Architecture

/ 3
£ b D b
L\

aw, VR + wiPRP + b))

Layer Output

o H(l) = a (W(l)X + l_?)(l)) p, = # of nodes in layer 1

1 1

activation function p;Xp pXxn p; X1

!
P1Xn

¢ H(Z) = a (W(Z)H(l) + 1_9)(2))

¢+ 9 =a(WOH® +p®)

Activation Functions

Option 1: sigmoid function

* |nput: all real numbers, output: [0, 1]

1
O-(SE') — 1 i 0;"4’“;’
foaf

¥

Option 2: hyperbolic tangent

* |[nput: all real numbers, output: [-1, 1]

tanh(z) =

€ — €

..........

nnnnnnnnnn

Option 3: Rectified Linear Unit (ReLU)

* Return x if x is positive (i.e. threshold at 0)

f(x) = max(0, z) /

....................

Pros and Cons of Activation Functions

1) Sigmoid .

(-) When input becomes very positive or very negative,

gradient approaches 0 (saturates and stops gradient descent)

* (-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

e (+) Derivative is easy to compute given function value!

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

(-) When input becomes very positive or very negative,
gradient approaches 0 (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient
(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Pros and Cons of Activation Functions

1) Sigmoid

2) Tanh

3) RelU

(-) When input becomes very positive or very negative,
gradient approaches 0O (saturates and stops gradient descent)
(-) Not zero-centered, so gradient on weights can end up all
positive or all negative (zig-zag in gradient descent)

(+) Derivative is easy to compute given function value!

(-) Still has a tendency to prematurely kill the gradient
(+) Zero-centered so we get a range of gradients

(+) Rescaling of sigmoid function so derivative is also not too
difficult

(+) Works well in practice (accelerates convergence)

(+) Function value very easy to compute! (no exponentials)
(-) Units can have no signal if input becomes too negative
throughout gradient descent

http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/

Goal: find a function between input and output

=4 ?
= @ e oln Y, glasses? |
. - f N
Y, smiling?]
@ Y3 identity?
parameters]

input datall

First idea: one hidden layer

47
\
O C

¢

8
"?
\

)
y

ng 1dent1ty9

hidden layer(] parametersl]

input datall

Second idea: more hidden layers (“deep” learning)

Y3 identity?

parametersl]

hiddenO

layer 2[]
hidden(d

input datall layer 10

Another idea: Flatten pixels of image
into a single vector

~

> A g
¥
/ - —
L e P
\~ "
e vy - N
2
%)
E /i) \ A

‘
‘] ..

K = 3
A ¢ \

input datall

Detour to autoencoders

HOIOIONOIoNe]

©
c
—
H

Detour to autoencoders

@ WQO#

CANSC
s/
G C

LR
(755
C \

hidden#

@ layer#

input#

Detour to autoencoders

@ W O# W (@# @

\ ‘Q"\ A‘ ’/IA
\0» '\‘W’,

@4& "“‘»@
AN

COlNENG

reconstructed#
input#

input#

Use unsupervised pre-training to find a function
from the input to itself

\\\\ 7 1=
W\ '\ /s 1L~
)}/\ ,f;L //
/\\v\—’/ (I ,’I,I
\ 4
\2 /7 7
AN PN 27

hidden[J

Hidden units can be interpreted as edges

BRC
hidden[J

input datall layer 101 reconstructed inputl]

Now: throw away reconstruction and input

hiddenl
input datal layer 10]

Now: throw away reconstruction and input

.

II\
Q.
o
- . .

layer 1

Then repeat the entire process for each layer

\
\\ \\\
So \
~ - - N \\:\\\
~ ~ \\‘
hidden @
layer 2 reconstructed

input

Then repeat the entire process for each layer

Then repeat the entire process for each layer

Then repeat the entire process for each layer

D]l ¢

.
e

=0
QL =
< Q.
&
NS

In the last layer, use the outputs (supervised)

Y, glasses?

D] ¢

Y, | smiling?

[—

Y; | identity?

R
S

parameters

=0
L = .
‘(<DQ-a
S &
N B

Finally, “fine-tune” the entire network!

Y, glasses?

Y, smiling?]

Y3 identity?

parametersl]

hiddenO
layer 2[]

hiddenl
input datal layer 10]

Takeaways

* As the number of parameters grows, a non-convex
function often has more and more local minima

e Starting at a “good” point is crucial!

1.0 2

Convex Non-convex

Takeaways

* Unsupervised pre-training uses latent structure
in the data as a starting point for weight
initialization

e After this process, the network is “fine-tuned”

* |n practice this has been found to increase
accuracy on specific tasks (which could be
specified after feature learning)

Weight initialization

* We still have to initialize the pre-training

* All O’s initialization is bad! Causes nodes to
compute the same outputs, so then the
weights go through the same updates during
gradient descent

* Need asymmetry! => usually use small
random values

Mini-batches

e So far in this class, we have considered
stochastic gradient descent, where one data
point is used to compute the gradient and
update the weights

* On the flipside is batch gradient descent,
where we compute the gradient with respect
to all the data, and then update the weights

A middle ground uses mini-batches of
examples before updating the weights

Notes about scores and softmax

* The output of the final fully connected layer is a vector
of length K (number of classes)

Notes about scores and softmax

The output of the final fully connected layer is a vector
of length K (number of classes)

The raw scores are transformed into probabilities using
the softmax function: (let s, be the score for class k)

Then we apply cross-entropy loss to these probabilities

Motivation for moving away from FC architectures

* For a 32x32x3 image (very smalll) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale

Motivation for moving away from FC architectures

* For a 32x32x3 image (very small!) we have
p=3072 features in the input layer

* For a 200x200x3 image, we would have
p=120,000! doesn’t scale

* Fully connected networks do not explicitly
account for the structure of an image and the
correlations/ relationships between nearby

pixels

ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

ldea: 3D volumes of neurons

* Do not “flatten” image, keep it as a volume with
width, height, and depth

 For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3

g

w{]

ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

J

w{|

ldea: 3D volumes of neurons

Do not “flatten” image, keep it as a volume with
width, height, and depth

For CIFAR-10, we would have:
— Width=32, Height=32, Depth=3
Each layer is also a 3 dimensional volume

The output layer is 1x1xC, where Cis the number of
classes (10 for CIFAR-10)

32 \
/ depth
g 32 o= o B T B v
oloeee| height
) OOOOO@
- ~ 0000 —~
00000 WidthT

w|

