CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Admin

Midterm 2 returned today

- Final project presentation sign-up on Piazza
 - Email me pdfs of your slides the night before
 - Class attendance taken for Dec 09 & 11

Gaussian Mixture Models (GMMs)

Kernel Density Estimation (KDE)

Missing data

Gaussian Mixture Models (GMMs)

Kernel Density Estimation (KDE)

Missing data

Problems with K-means

- Does not account for different cluster sizes, variances, and shapes
- Does not allow points to belong to multiple clusters
- Not generative (cannot create a new data point)

Discriminative vs. Generative Algorithms

- <u>Discriminative</u>: finds a decision boundary
 - Logistic regression, K-means
- Generative: estimates probability distributions
 - Naïve Bayes, Gaussian Mixture Models

Figure: Ameet Soni

Gaussian Mixture Models (GMMs)

$$p(\vec{x}_i) = \sum_{k=1}^{K} p(\vec{x}_i, k) = \sum_{k=1}^{K} p(k)p(\vec{x}_i|k) = \sum_{k=1}^{K} \pi_k N(\vec{x}_i|\vec{\mu}_k, \sigma_k^2)$$
cluster
membership

cluster
distribution

Maximize likelihood:

$$L(X) = \prod_{i=1}^{n} p(\vec{x}_i) = \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_k N(\vec{x}_i | \vec{\mu}_k, \sigma_k^2)$$
Model parameters

Gaussian Mixture Models (GMMs)

- Initialization step: for each cluster
 - Probability $\pi_k = 1/K$ (uniform prior)
 - \circ Mean $\vec{\mu}_k$ = choose random point
 - Variance $\sigma_k^2 = \text{sample variance}$
- E-step: "soft" assignment

$$w_{ik} = p(k|\vec{x}_i) = \frac{p(k)p(\vec{x}_i|k)}{p(\vec{x}_i)} = \frac{\pi_k N(\vec{x}_i|\vec{\mu}_k, \sigma_k^2)}{\sum_{j=1}^K \pi_j N(\vec{x}_i|\vec{\mu}_j, \sigma_j^2)}$$

probability that \vec{x}_i came from cluster k

Gaussian Mixture Models (GMMs)

• M-step: parameter update

$$N_k = \sum_{i=1}^n w_{ik}$$
 (# of points assigned to cluster k)

$$\circ \quad \pi_k = \frac{N_k}{n}$$

$$0 \quad \vec{\mu}_k = \frac{1}{N_k} \sum_{i=1}^n w_{ik} \, \vec{x}_i$$

$$\sigma_k^2 = \frac{1}{N_k} \sum_{i=1}^n w_{ik} \left(\vec{x}_i - \vec{\mu}_k \right)^2$$

use updated mean

Example of GMMs with different covariance constraints on the Iris flower data

Generative Process

- Sample cluster k using $[\pi_1, \pi_2, ..., \pi_k]$
- Sample x from $N(\vec{\mu}_k, \sigma_k^2)$

Gaussian Mixture Models (GMMs)

Kernel Density Estimation (KDE)

Missing data

KDE (Kernel Density Estimation)

Figure 11.9 from MML textbook

KDE (Kernel Density Estimation)

Commonly used kernel functions

Width selection

Kernel density estimate (KDE) with different bandwidths of a random sample of 100 points from a standard normal distribution. Grey: true density (standard normal). Red: KDE with h=0.05. Black: KDE with h=0.337. Green: KDE with h=2.

Wikipedia

Gaussian Mixture Models (GMMs)

Kernel Density Estimation (KDE)

Missing data

Types of missing data

- MCAR: Missing Completely At Random. Not related to:
 - Specific values
 - Observed responses

- MAR: Missing At Random. Not related to:
 - Specific values

MNAR: Missing Not At Random

Techniques for handling missing data

- Try to prevent the problem in the first place
 - Careful study design, follow-up with participants, etc
- Omit rows with missing data (reduces n)

- Omit only when value is needed
 - i.e. Naïve Bayes, per-feature estimates
- Mean substitution (per feature)

Techniques for handling missing data

- Imputation
 - Use similar examples to guess the missing values
 - Can be done locally or globally

- Last observation carried forward
 - Useful for time-series data

Gaussian Mixture Models (GMMs)

Kernel Density Estimation (KDE)

Missing data

Midterm solutions not posted online