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Admin

* Midterm 2 returned today

* Final project presentation sign-up on Piazza
— Email me pdfs of your slides the night before
— Class attendance taken for Dec 09 & 11



Outline for today

* Gaussian Mixture Models (GMMs)

* Kernel Density Estimation (KDE)

* Missing data

e Go over Midterm 2



Outline for today

* Gaussian Mixture Models (GMMs)



Problems with K-means

 Does not account for different cluster sizes,

variances, and shapes
* Does not allow points to belong to multiple clusters

* Not generative (cannot create a new data point)



Discriminative vs. Generative Algorithms

e Discriminative: finds a decision boundary

— Logistic regression, K-means

* Generative: estimates probability distributions

— Naive Bayes, Gaussian Mixture Models
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Gaussian Mixture Models (GMMs)

K prior over cluster sizes
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e Maximize likelihood:
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Gaussian Mixture Models (GMMs)

* |nitialization step: for each cluster
o Probability m;, = 1/K (uniform prior)

o Mean f,, = choose random point

o Variance ¢¢ = sample variance

e E-step: “soft” assignment
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Gaussian Mixture Models (GMMs)

* M-step: parameter update

N, = Z?:l Wi, (# of points assigned to cluster k)
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Density Estimation with Gaussian Mixture Models
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(e) EM after 10 iterations. (f) EM after 62 iterations.
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spherical

diag

Example of GMMs with different covariance
constraints on the Iris flower data

Train accuracy: 88.3

Test accuracy? 92.3
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Train accuracy: 93.7

Test accuracy? 89.7

tied

full

Train accuracy: 95.5

Test accuracy? 100.0

Train accuracy: 94.6

Test accuracy? 97.4

X

setosa

versicolor
virginica

https://scikit-learn.org/stable/auto_examples/mixture/plot gmm covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py



https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Generative Process

» Sample cluster k using |, o, ..., T ]

« Sample x from N (i, , o)



Outline for today

* Kernel Density Estimation (KDE)



KDE (Kernel Density Estimation)
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Figure 11.9 from MML textbook



KDE (Kernel Density Estimation)

RIS

given point

width:
smoothing

kernel: weighting function
parameter



Commonly used kernel functions

— Uniform

1.0 | —— Triangle

— Epanechnikov
= Quartic

— Triweight
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Drensity funclion
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Kernel density estimate (KDE) with different
bandwidths of a random sample of 100 points
from a standard normal distribution. Grey: true
density (standard normal). Red: KDE with
h=0.05. Black: KDE with h=0.337. Green: KDE
with h=2.



Outline for today

* Missing data



Types of missing data

* MCAR: Missing Completely At Random. Not
related to:

— Specific values
— Observed responses

* MAR: Missing At Random. Not related to:
— Specific values

* MNAR: Missing Not At Random

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Try to prevent the problem in the first place
— Careful study design, follow-up with participants, etc

 Omit rows with missing data (reduces n)

* Omit only when value is needed
— i.e. Naive Bayes, per-feature estimates

* Mean substitution (per feature)

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Imputation
— Use similar examples to guess the missing values
— Can be done locally or globally

e Last observation carried forward
— Useful for time-series data

Reference: “The prevention and handling of the missing data” Kang (2013)



Outline for today

e Go over Midterm 2



Midterm solutions
not posted online



