CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Admin

• Midterm 2 due today!

- Tuesday + Wednesday: work on final project
 - Try to come to the same lab session as your partner

Clustering overview

• K-means

Clustering overview

• K-means

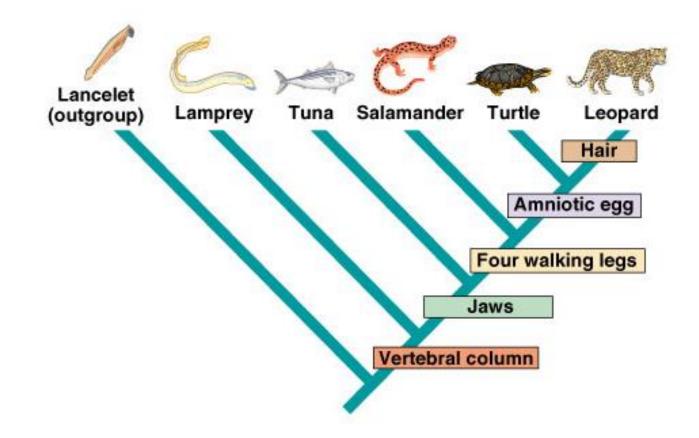
Clustering

- Learn about the structure in our data
- Cluster new data (prediction)
- Goal: $C = \{C_1, C_2, ..., C_k\}$ such that within cluster similarity is minimized

Two main types of clustering

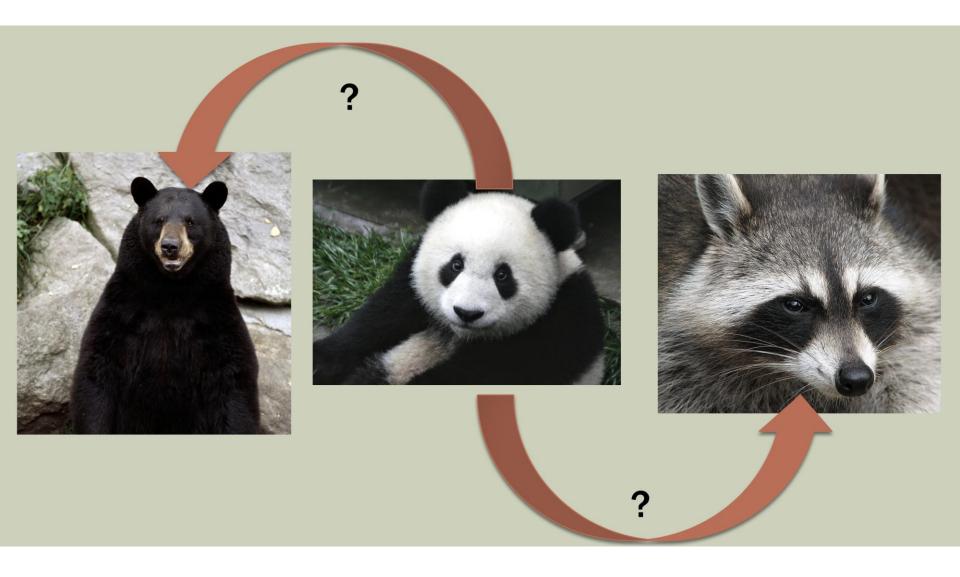
- Flat/Partitional:
 - K-means
 - Gaussian mixture models
- Hierarchical:
 - Agglomerative: bottom-up
 - Divisive: top-down
 - Examples: UPGMA and Neighbor Joining

Hierarchical clustering example: trees

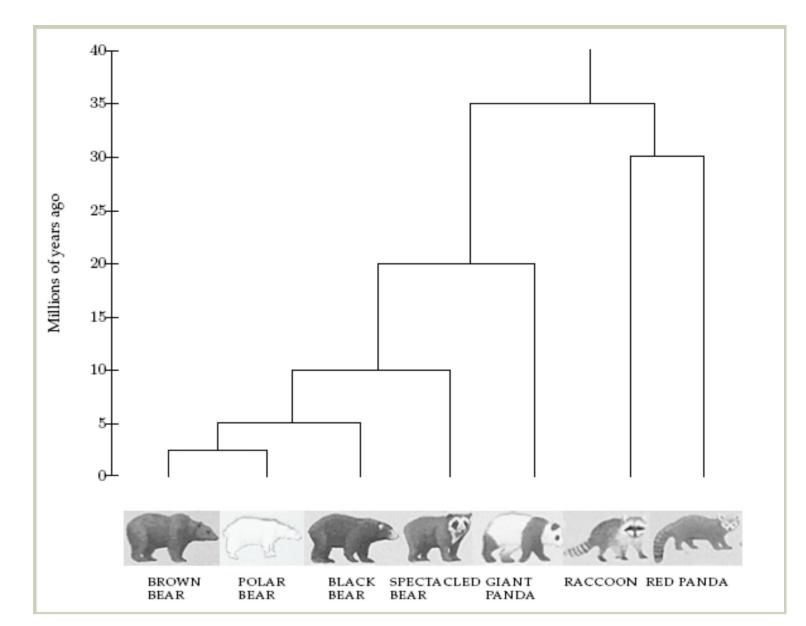


Credit: Pearson Education, Benjamin Cummings

Are pandas more closely related to bears or raccoons?

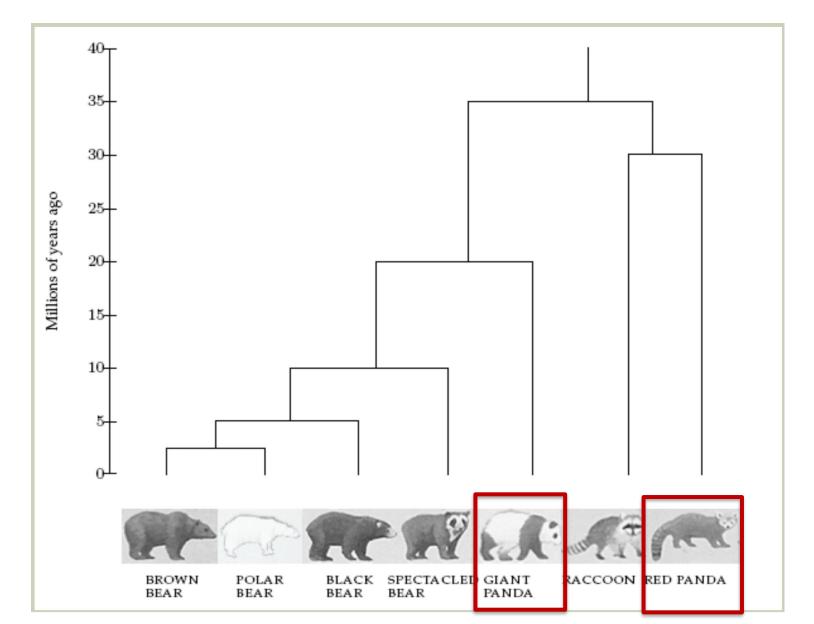


Are pandas more closely related to bears or raccoons?



Credit: Ameet Soni

What about red pandas?



Credit: Ameet Soni

Clustering overview

• K-means

K-means Algorithm

- Initialization step: Choose k means (cluster centers) randomly from the data $\vec{\mu}_1^{(1)}, \vec{\mu}_2^{(1)}, ..., \vec{\mu}_k^{(1)}$
- Expectation-maximization (EM) algorithm

○ <u>E-step</u>: assign each datapoint to the closest mean $\vec{x}_i \in C_k^{(t)}$

M <u>M-step:</u> recompute means as the cluster average

iterate

$$\vec{\mu}_{k}^{(t+1)} = \frac{1}{|C_{k}^{(t)}|} \sum_{\vec{x}_{i} \in C_{k}^{(t)}} \vec{x}_{i}$$

K-means Algorithm

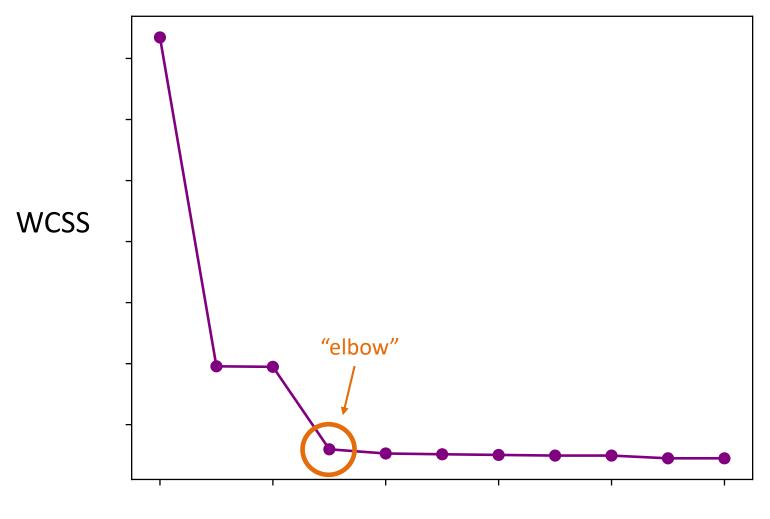
• Minimizes:

$$WCSS = \sum_{k=1}^{K} \sum_{\vec{x}_i \in C_k} \left\| \vec{x}_i - \vec{\mu}_k \right\|^2$$

within-cluster sum of squares

- Stopping criteria:
 - No change in cluster membership
 - Max # of iterations exceeded
 - Configuration/pattern you've seen before

How to choose k?



of clusters

Handout 23

Handout 23

1. a) E-step: $C_1^{(1)} = \{\vec{x}_2\}, \ C_2^{(1)} = \{\vec{x}_1, \vec{x}_3\}$ b) M-step: $\vec{\mu}_1^{(2)} = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$, $\vec{\mu}_2^{(2)} = \begin{bmatrix} 3.5 & 0.5 \end{bmatrix}^T$ c) E-step: $C_1^{(2)} = \{\vec{x}_1, \vec{x}_2\}, \ C_2^{(2)} = \{\vec{x}_3\}$ M-step: $\vec{\mu}_1^{(3)} = \begin{bmatrix} 2.5 & 2 \end{bmatrix}^T$, $\vec{\mu}_2^{(3)} = \begin{bmatrix} 4 & -1 \end{bmatrix}^T$

X $|\langle = | , \overline{M} = |]$ $M(SS = 1^{2} + (\sqrt{S})^{2} + (\sqrt{S})^{2} = 8^{1}$

5. Runtime is O(npKT)

Clustering overview

• K-means

Problems with K-means

- Does not account for different cluster sizes, variances, and shapes
- Does not allow points to belong to multiple clusters
- Not generative (cannot create a new data point)

Discriminative vs. Generative Algorithms

- <u>Discriminative</u>: finds a decision boundary
 - Logistic regression, K-means
- <u>Generative</u>: estimates probability distributions
 - Naïve Bayes, Gaussian Mixture Models

