CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Outline for today

Revisit data visualization

Real-world data science exercise

• Begin: clustering

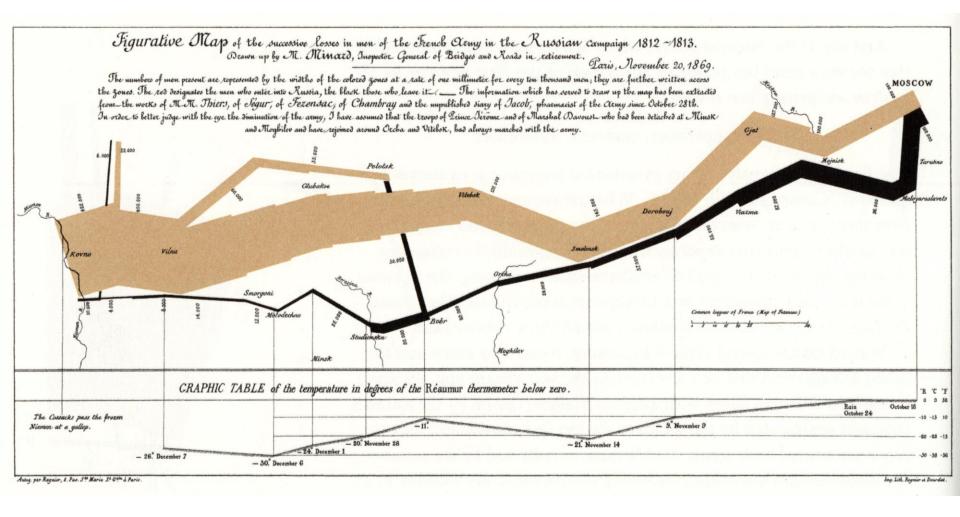
Outline for today

Revisit data visualization

Real-world data science exercise

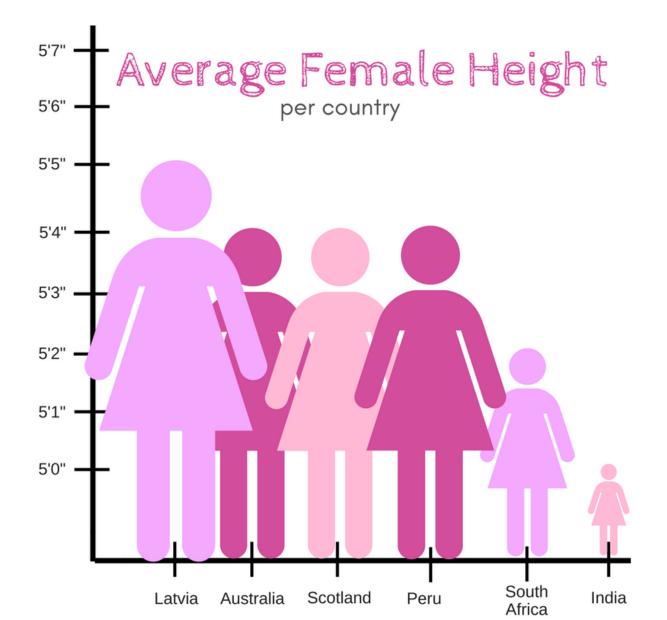
• Begin: clustering

Visualization can illuminate...



Size of Napoleon's army on the advance (in tan) and retreat (in black) from Moscow in 1812

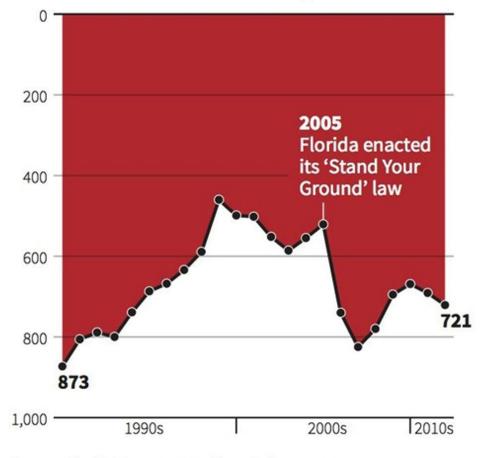
... but also mislead



... but also mislead

Gun deaths in Florida

Number of murders committed using firearms



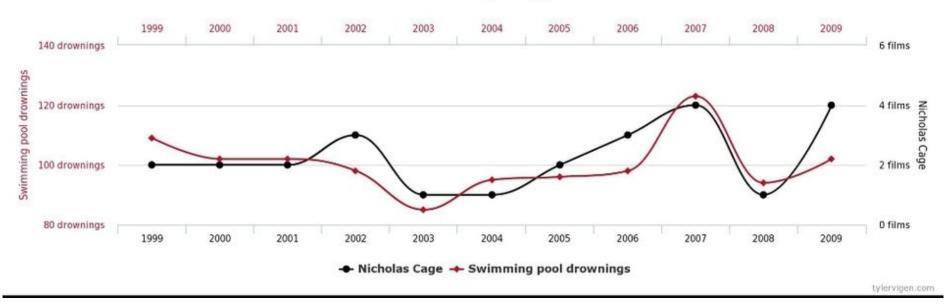
Source: Florida Department of Law Enforcement

C. CIIdii 10/02/2014	C. Chan	16/02/2014
----------------------	---------	------------

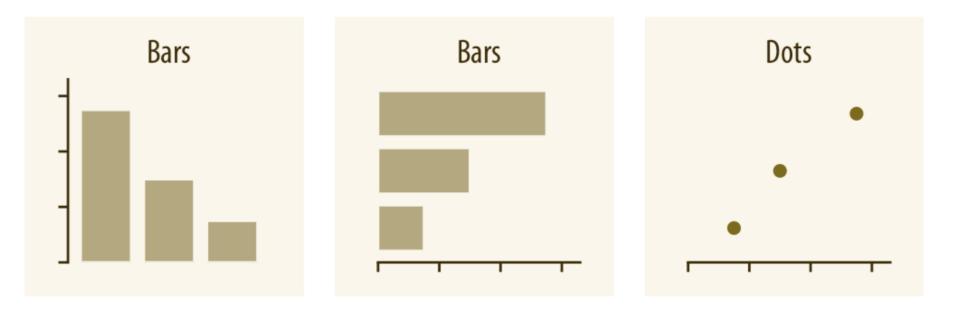
... but also mislead

Number of people who drowned by falling into a pool

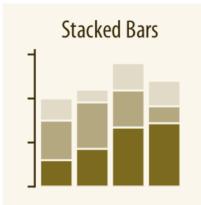
Films Nicolas Cage appeared in



Visualizing amounts

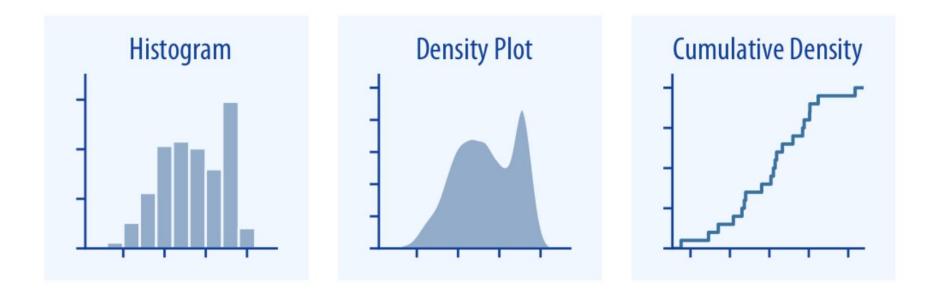


Visualizing amounts

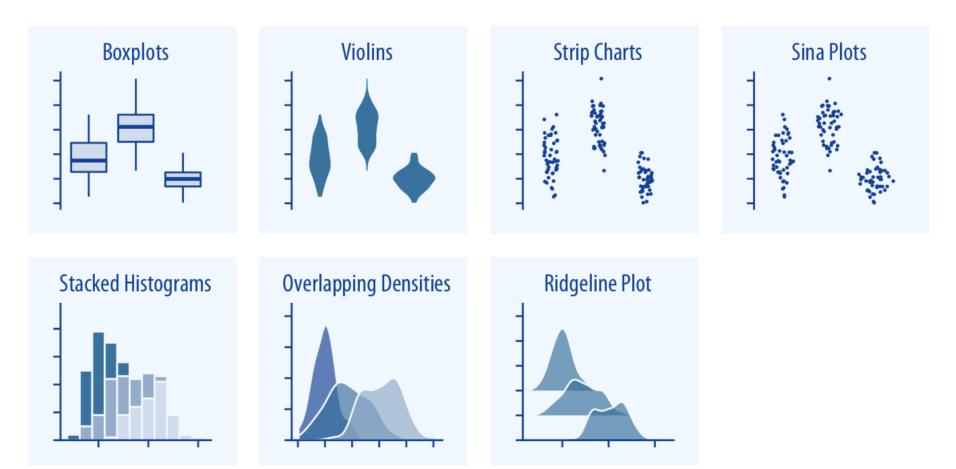


Heatmap

Visualizing distributions

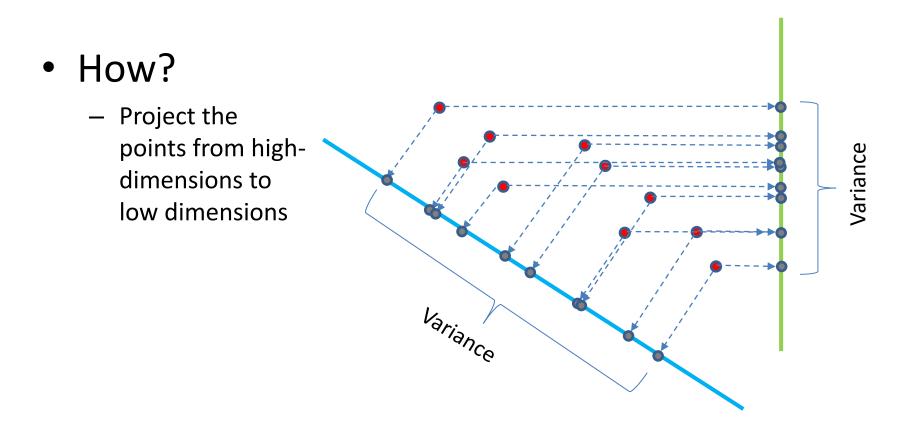


Visualizing distributions



Alternative to PCA

Reducing dimensions

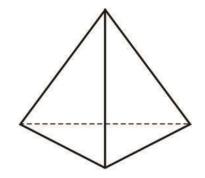


Prefer the blue line because more spread of the original data is represented \rightarrow Principal Component Analysis (**PCA**)

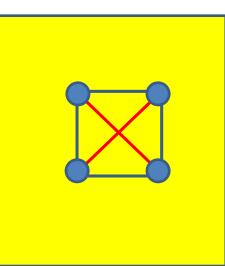
Reducing dimensions

• How?

- Project the points from highdimensions to low dimensions
- Reconstruct high dimensional relationships in low dimensions



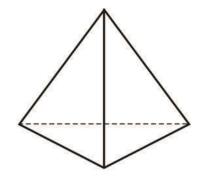
Tetrahedron with length 1 sides. All pairwise distances between the four points = 1



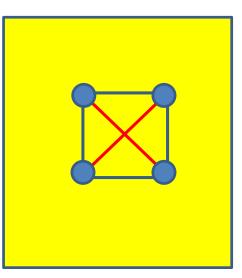
Try to arrange four points in 2D such that pairwise distances are as close as possible to the original pairwise distances

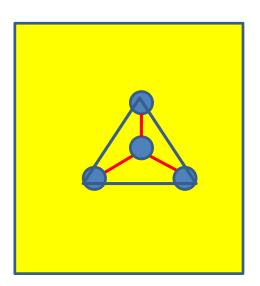
Reducing dimensions

- How?
 - Project the points from highdimensions to low dimensions
 - Reconstruct high dimensional relationships in low dimensions



Tetrahedron with length 1 sides. All pairwise distances between the four points = 1



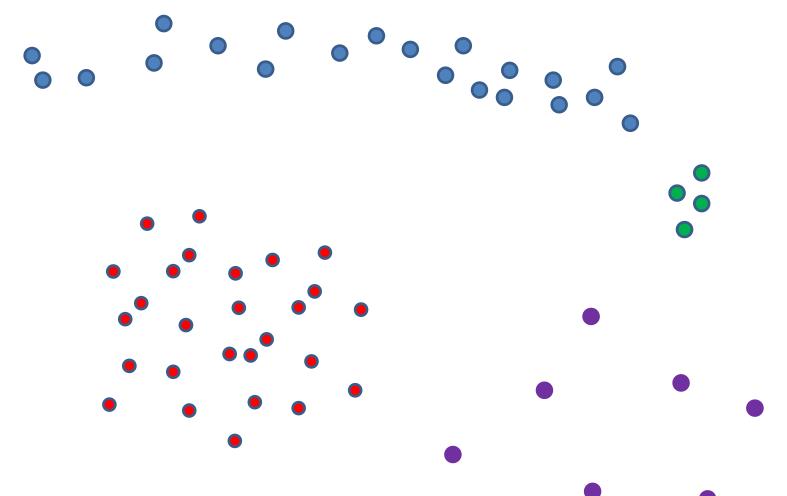


A lot of the time we want to create <u>clusters.</u>

Distances in the original data may not be meaningful

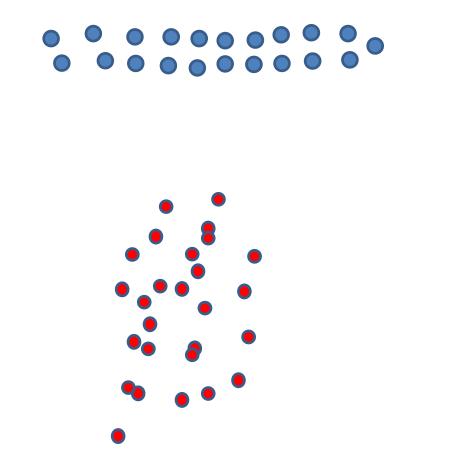
So we want some kind of <u>embedding</u> that preserves clustering

Linear projection (e.g. PCA) is only one type of embedding



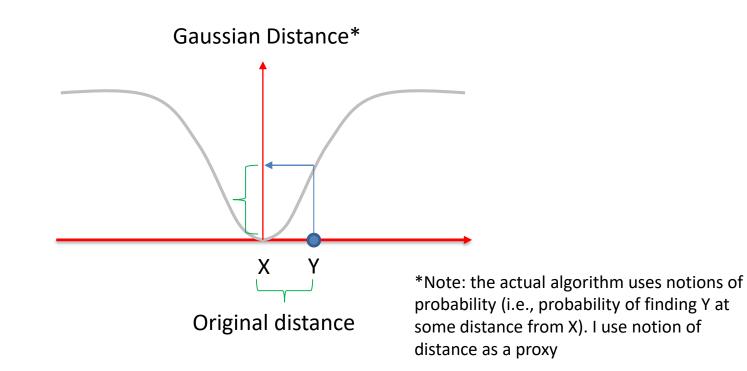
What if the overall distances are not meaningful?

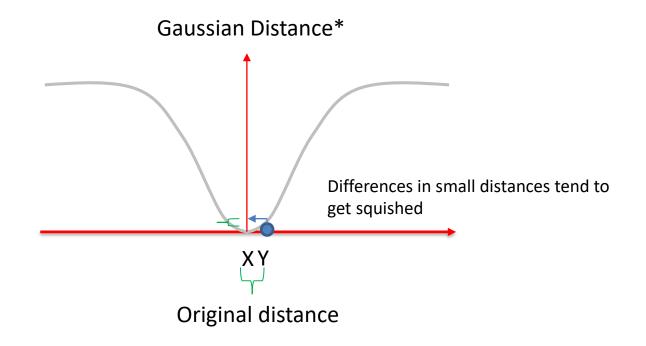
Focus on your neighbors

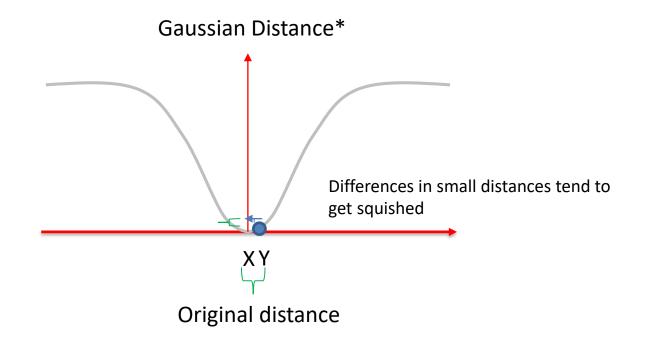


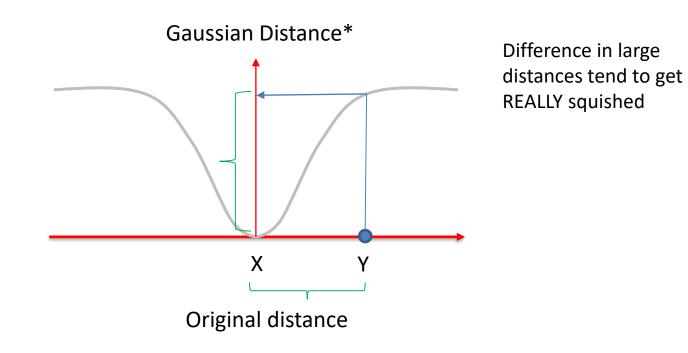
What if the overall distances are not meaningful?

Focus on your neighbors

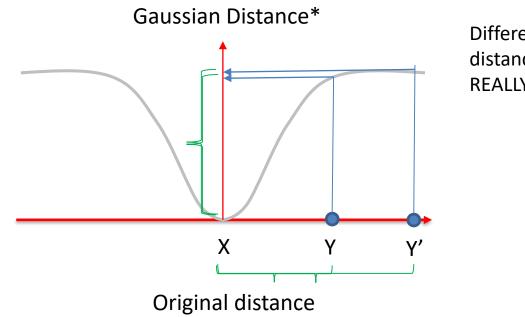




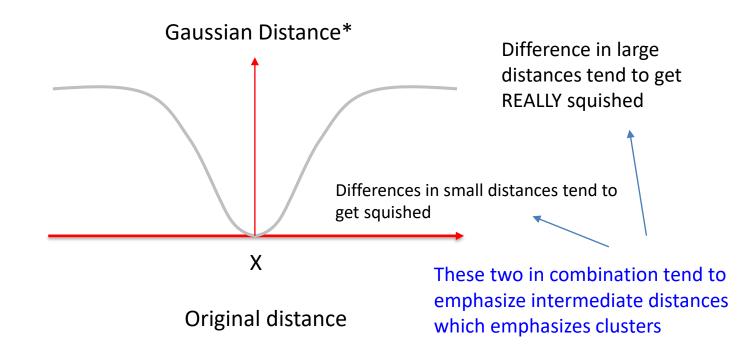


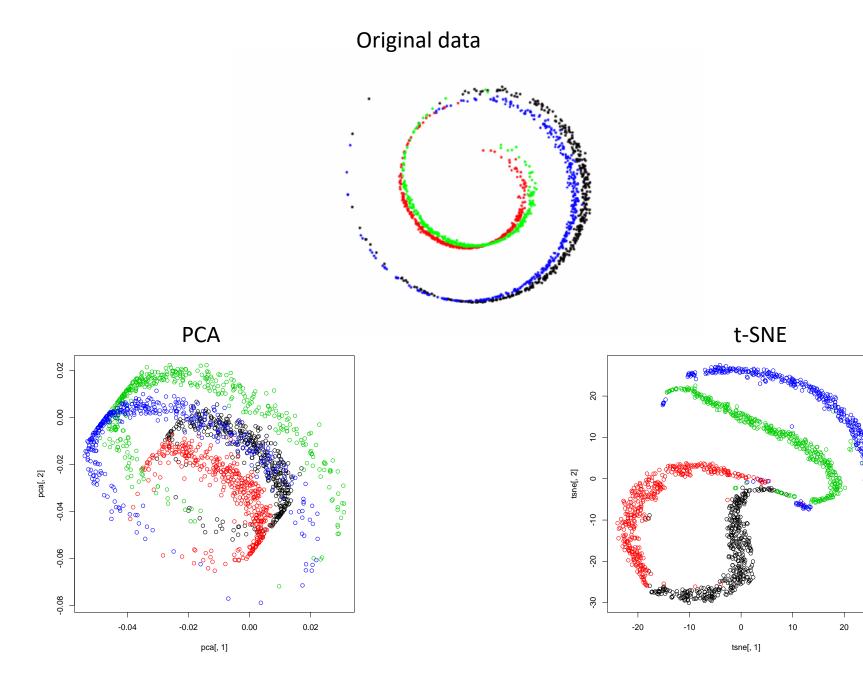


 Define distances between a point X to a point Y by a Gaussian function centered at X



Difference in large distances tend to get REALLY squished

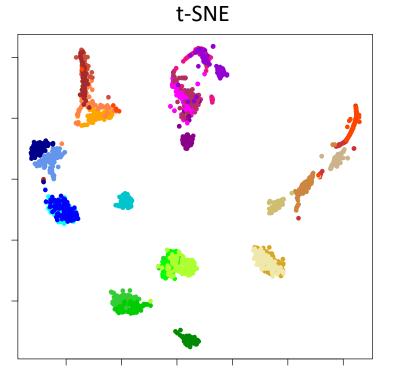




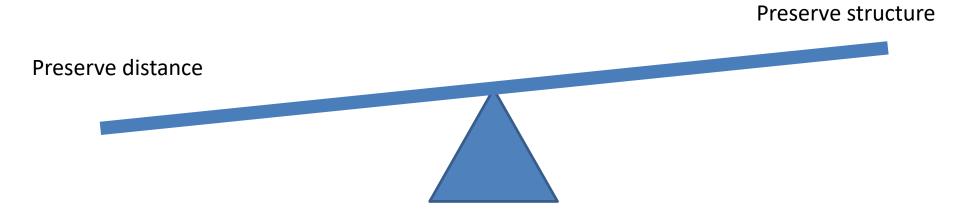
"swissroll data" Dinoj Surendran

PCA ACB
IBS
ASW
ITU
BEB
JPT
CDX
KHV
CEU
LWK
CHB
MSL
CHS
MXL
CLM
PEL
ESN
PJL
FIN
PUR
GBR
STU
GIH
TSI
GWD
YRI

СНВ	Han Chinese in Beijing, China
JPT	Japanese in Tokyo, Japan
CHS	Southern Han Chinese
CDX	Chinese Dai in Xishuangbanna, China
кни	Kinh in Ho Chi Minh City, Vietnam
CEU	Utah Residents (CEPH) with Northern and Western European Ancestry
TSI	Toscani in Italia
FIN	Finnish in Finland
GBR	British in England and Scotland
IBS	Iberian Population in Spain
YRI	Yoruba in Ibadan, Nigeria
LWK	Luhya in Webuye, Kenya
GWD	Gambian in Western Divisions in the Gambia



MSL	Mende in Sierra Leone
ESN	Esan in Nigeria
ASW	Americans of African Ancestry in SW USA
ACB	African Caribbeans in Barbados
MXL	Mexican Ancestry from Los Angeles USA
PUR	Puerto Ricans from Puerto Rico
CLM	Colombians from Medellin, Colombia
PEL	Peruvians from Lima, Peru
GIH	Gujarati Indian from Houston, Texas
PJL	Punjabi from Lahore, Pakistan
BEB	Bengali from Bangladesh
STU	Sri Lankan Tamil from the UK
ITU	Indian Telugu from the UK



How to visualize data always depends on the data, and the question

There is rarely if ever a single correct approach

Outline for today

Revisit data visualization

Real-world data science exercise

• Begin: clustering

Discussion: admissions at Haverford

- Haverford has suddenly started receiving 10x more applications than usual
- You are tasked with creating an algorithm to determine whether or not an applicant should be admitted
- Questions:
 - How would you encode features?
 - How would you use past admission data to train?
 - What loss function are you trying to optimize?

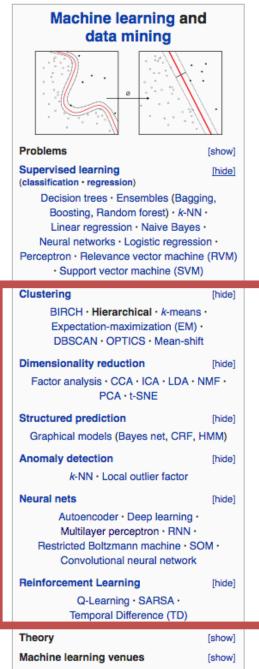
Outline for today

Revisit data visualization

Real-world data science exercise

• Begin: clustering

Supervised Learning: makes use of examples where we know the underlying "truth" (label/output)



Machine learning portal

V.T.E

Unsupervised Learning: Learn underlying structure or features without labeled training data

Unsupervised learning: 3 main areas

1) <u>Clustering</u>: group data points into clusters based on features only

- 2) <u>Dimensionality reduction</u>: remove feature correlation, compress data, visualize data
- 3) <u>Structured prediction</u>: model latent variables (example: Hidden Markov Models)

Unsupervised learning examples from biology: clustering

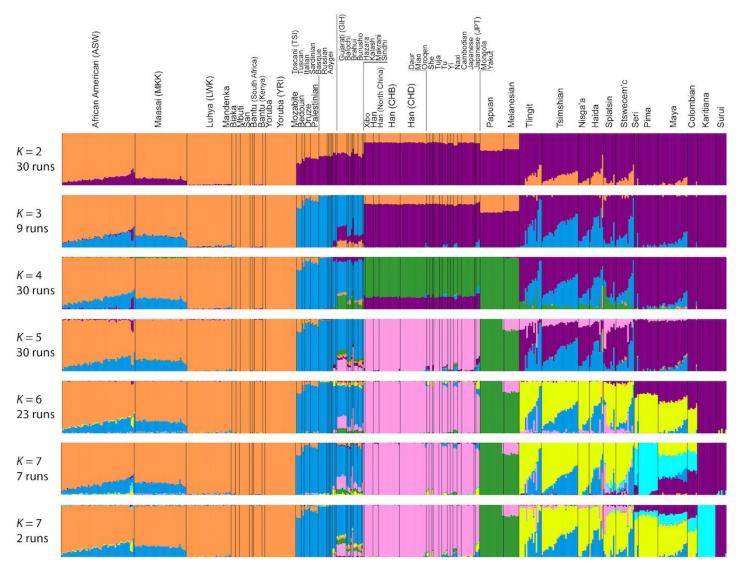
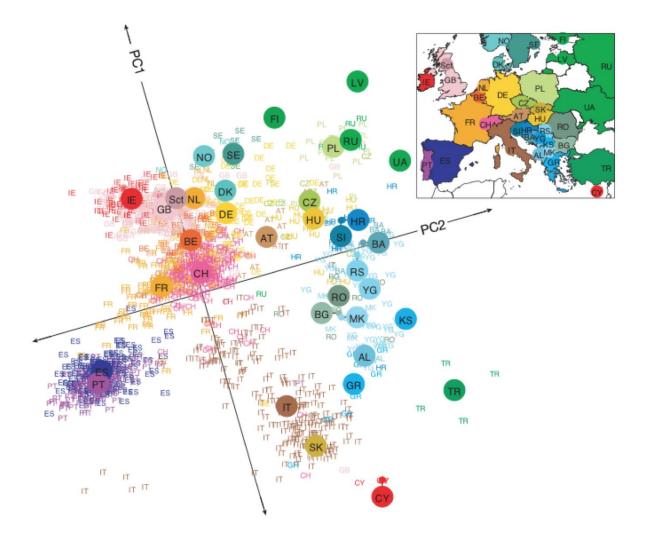
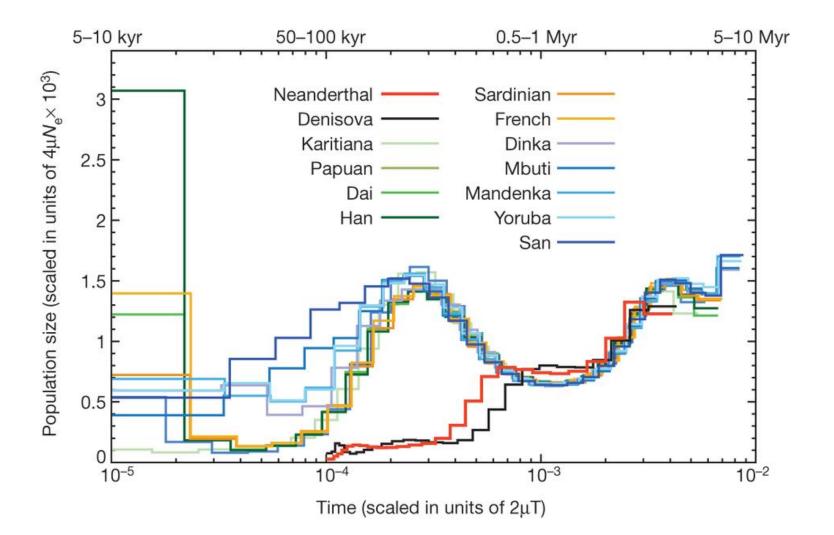


Figure: German Dziebel

Unsupervised learning examples from biology: dimensionality reduction



Unsupervised learning examples from biology: structured prediction



The complete genome sequence of a Neanderthal from the Altai Mountains, Prufer et al (2014)

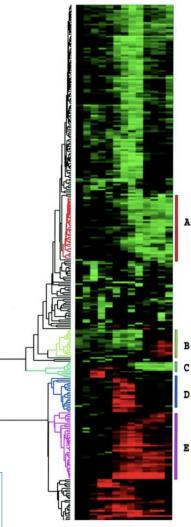
Clustering

- Learn about the structure in our data
- Cluster new data (prediction)
- Goal: $C = \{C_1, C_2, ..., C_k\}$ such that within cluster similarity is minimized

Applications of clustering

 Cluster genes with similar expression patterns

Michael B. Eisen,* Paul T. Spellman,* Patrick O. Brown,† and David Botstein*‡

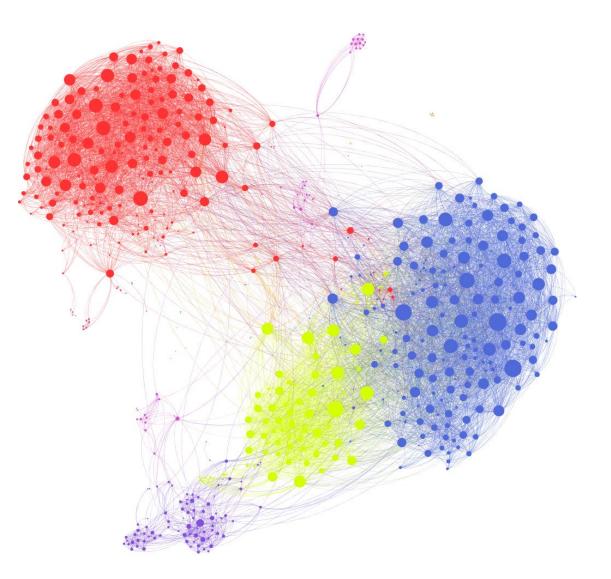


Applications of clustering

Image segmentation: cluster similar regions of an image



Applications of clustering



 Clustering in social graphs

Image: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/