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Outline for today

e Revisit data visualization

e Real-world data science exercise

* Begin: clustering



Outline for today

e Revisit data visualization



Visualization can illuminate...
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... but also mislead

Gun deaths in Florida

Number of murders committed using firearms
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Swimming pool drownings
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... but also mislead

Number of people who drowned by falling into a pool
correlates with
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Visualizing amounts

Bars

Bars Dots

Figure from “Fundamentals of Data Visualization” by Claus Wilke



Visualizing amounts
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Heatmap

Figure from “Fundamentals of Data Visualization” by Claus Wilke



Visualizing distributions

Histogram Density Plot Cumulative Density

Figure from “Fundamentals of Data Visualization” by Claus Wilke
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Visualizing distributions
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Figure from “Fundamentals of Data Visualization” by Claus Wilke



Alternative to PCA



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

|
Variance

—

Prefer the blue line because more spread of the original data is
represented—> Principal Component Analysis (PCA)



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

— Reconstruct high
dimensional
relationships in
low dimensions

Tetrahedron with
length 1 sides.

All pairwise
distances between
the four points =1

Try to arrange four
points in 2D such
that pairwise
distances are as
close as possible
to the original
pairwise distances



Reducing dimensions

e How?

— Project the
points from high-
dimensions to
low dimensions

— Reconstruct high
dimensional
relationships in
low dimensions

Tetrahedron with
length 1 sides.

All pairwise
distances between
the four points =1




A lot of the time we want to create
clusters.

Distances in the original data may not
be meaningful

So we want some kind of embedding
that preserves clustering

Linear projection (e.g. PCA) is only one
type of embedding



What if the overall distances
are not meaningful?

Focus on your neighbors



What if the overall distances
are not meaningful?

Focus on your neighbors



t-SNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance®

Wl

X Y

l | *Note: the actual algorithm uses notions of
o ' probability (i.e., probability of finding Y at
Original distance some distance from X). | use notion of

distance as a proxy



t-SNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance®

Differences in small distances tend to
get squished
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Neighborhood Embedding)

* Define distances between a point X to a
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t-SNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance* , ,
Difference in large

distances tend to get
REALLY squished
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t-SNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance* , ,
Difference in large

distances tend to get
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t-SNE (t-distributed Stochastic
Neighborhood Embedding)

* Define distances between a point X to a
point Y by a Gaussian function centered at X

Gaussian Distance®

A Difference in large

distances tend to get
REALLY squished

Differences in small distances tend to

get squished ,\

These two in combination tend to
o ' emphasize intermediate distances
Original distance which emphasizes clusters

X
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PCA
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Preserve structure

Preserve distance

How to visualize data always depends on the data, and the question

There is rarely if ever a single correct approach



Outline for today

e Real-world data science exercise



Discussion: admissions at Haverford

 Haverford has suddenly started receiving 10x
more applications than usual

* You are tasked with creating an algorithm to
determine whether or not an applicant should
be admitted

* Questions:
— How would you encode features?
— How would you use past admission data to train?
— What loss function are you trying to optimize?



Outline for today

* Begin: clustering



Machine learning and
data mining

e
Problems [show]
Supervised learning [hide]

(classification - regression)
Decision trees - Ensembles (Bagging,
Boosting, Random forest) - k-NN -
Linear regression - Maive Bayes -

S up ervi S e d Meural networks - Logistic regression - Un Sup ervi S e d

Perceptron - Aelevance vector machine (RVM)

Learning: + Support vector machine (SVM) / Learning:

Clustering [hide]
BIRCH - Hierarchical - k-means -

makes use of examples iy Learn underlying

DESCAN - OPTICS - Mean-shift

where we know the Dimensionaily reduction wo  f Structure or features

Factor analysis - CCA - ICA - LDA - NMF -

underlying “truth” piia L without labeled

Structured prediction [hide]

(label/output) Graphical models (Bayes net, CRF, HMM) training data

Anomaly detection [hide]
K-NM - Local outlier factor

Meural nets [hide]

Autocenceoder - Deep learning -
Multilayer perceptron - RNM -
Restricted Boltzmann machine - SOM -
Convolutional neural netwark

Reinforcement Learning [hide]

Q-Learning - SARSA -
Temporal Difference (TD)

Theory [show]

Machine learning venues [show]

- Machine learning portal



Unsupervised learning: 3 main areas

1) Clustering: group data points into clusters
based on features only

2) Dimensionality reduction: remove feature
correlation, compress data, visualize data

3) Structured prediction: model latent variables
(example: Hidden Markov Models)




ised learning examples from

Unsuperv

ing

. clusteri

biology

ning
BUBNLEY
uelquojo)
efely
ewlld
EES
0,WB0aMS)S
uisields
epieH
eebsiN
uelyswis|.
nbun L
uelsauea
nYeA. uended
ejoBuojy)
(Ldr) asaueder
asauedep
uelpoquEeD
xeN = A
A 1
ny F ]|
eln]
3
cmco,_._nwv = ) =
OBl

anegl  (QHD) ueH

(gHO) ueH

nye.g
R Eocmmm
(HI9) nezeing
1864py
verssny
e uBsae
uelej SZNJi
UBOSn | uinopa!
(Is1) wedsol  8)iqeZo]
|
(I4A) BanioA |
BQgNIOA |
- | il :

(eduay) nyjueg ]
(ed1yy yinog) Exm :

(M) eAUNT

2 runs » ”

(M) resee

(MSY) ueousWwy ueolyy

wv wv wv w

& %) ol c c n
~N 2 3m < 2 wn 3 o 2 7% ~N
Il o N = I o Il o I n = 11
x M x O x M x M x N x N x



Unsupervised learning examples from
biology: dimensionality reduction
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Genes mirror geography within Europe (2008)



Unsupervised learning examples from
biology: structured prediction
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The complete genome sequence of a Neanderthal from the Altai Mountains, Prufer et al (2014)



Clustering

e Learn about the structure in our data

e Cluster new data (prediction)

* Goal: C = {(Cy, C5, ..., Ci} such that within cluster

similarity is minimized



Applications of clustering

* Cluster genes with similar
expression patterns

Cluster analysis and display of genome-wide expression patterns

Michael B. Eisen,* Paul T. Spellman,* Patrick O. Brown,Jr and David Botstein +




Applications of clustering

* Image segmentation: cluster similar
regions of an image

Image: Jessica Wu



Applications of clustering

.

.
«

* Clusteringin
social graphs

Image: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/



