CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Admin

- Lab 7 grades & feedback posted on Moodle
- Lab 8 due tonight
- Optional lab tomorrow (Tuesday)
- Midterm 2 handed out today in class
 - Do not open the exam until you're ready to start
 - Time limit: 3 hours
 - Resources: hand-written study sheet, calculator
 - Due Monday (11/25) at the beginning of class

Outline for today

Practice Midterm 2

Handout 21

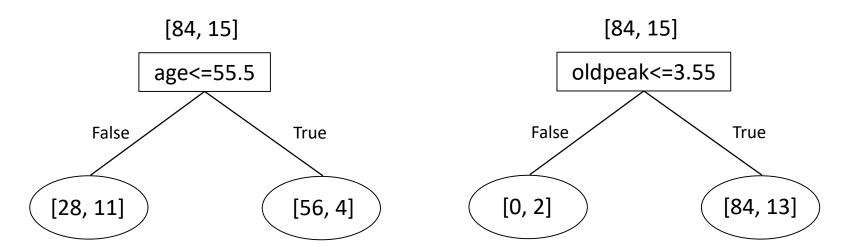
1. Bootstrap

Unordered

•
$$n = 2 \Rightarrow \{n_1, n_1\}, \{n_1, n_2\}, \{n_2, n_2\}$$
 3 sets

•
$$n = 3$$

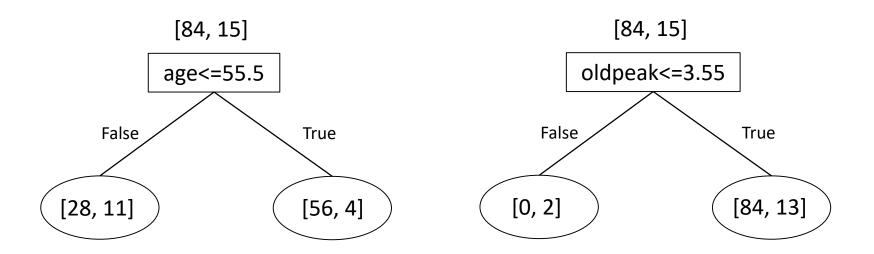
$$- \{n_1, n_1, n_1\} \Rightarrow 3 \text{ sets}$$


$$-\{n_1, n_2, n_3\} \Rightarrow 1 \text{ set}$$

-
$$\{n_1, n_1, n_1\} \Rightarrow 3 \text{ sets}$$

- $\{n_1, n_2, n_3\} \Rightarrow 1 \text{ set}$
- $\{n_1, n_1, n_2\} \Rightarrow 6 \text{ sets}$

Ordered: n^n sets

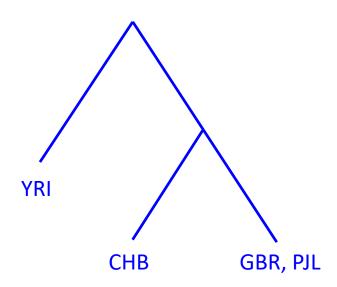

= 2.125 (b) Var(y)= \(\frac{1}{y} \left(\frac{1}{y} - \frac{1}{y} \right)^2 p(y) \\ \frac{1}{-1}} p-value = 0.08 $= (0-5.152)^{2} \cdot \frac{8}{7}$ 9=0.05 -1,35 => fail to reject Ho = 1.109

Classification error

Entropy

$$H(Y) = 0.6136190195993708$$

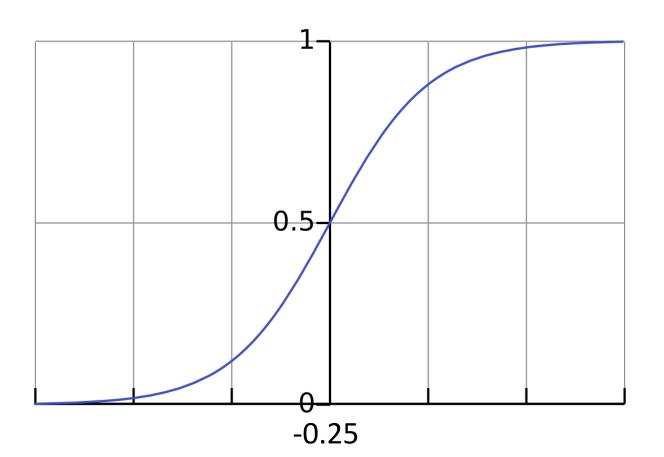
$$H(Y|age <= 55.5) = 0.5522480910534322$$


$$H(Y|oldpeak <= 3.55) = 0.5568804630596093$$

=> Age feature produces more information gain!

PCA

Consider the following four populations from the 1000 Genomes Project: CHB ("Chinese from Bei-jing"), GBR ("Great Britain"), PJL ("Punjabi from Lahore"), YRI ("Yoruba from Nigeria"). The first two principal components for this data are shown below:



GBR & PJL are most closely related

Logistic Regression

Say I train a binary logistic regression model (i.e. outcomes $\in \{0,1\}$) and end up with $\hat{w} = [\hat{w}_0, \hat{w}_1]^T = [1,4]^T$. What is the decision boundary? Sketch a graph of this logistic model and label the decision boundary. How would you classify a new point $x_{\text{test}} = -0.3$? $< -0.25 \Rightarrow \text{predict 0}$

Disparate impact

Hypothetically, of the applicants for loans at a bank, 27.5% of the Black applicants got a loan compared to 35% for white applicants. Is there disparate impact in the bank's decisions? Explain your reasoning.

If
$$P(C = 1|X = 0) < 0.8 * P(C = 1|X = 1)$$

 \Rightarrow disparate impact

$$p(y = k | \mathbf{x}) \propto p(y = k) \prod_{j=1}^{P} p(x_j | y = k).$$

•
$$\theta_0 = \frac{N_0 + 1}{n + K} = \frac{4}{7}$$
; $\theta_1 = \frac{3}{7}$

$$p(y = k | \mathbf{x}) \propto p(y = k) \prod_{j=1}^{p} p(x_j | y = k).$$

•
$$\theta_0 = \frac{N_0 + 1}{n + K} = \frac{4}{7}$$
; $\theta_1 = \frac{3}{7}$ $\theta_{k,j,v} = \frac{N_{k,j,v} + 1}{N_k + |f_j|}$

•
$$\vec{x} = [1, D]$$

$$0 p(\vec{x}|y = 0) = \theta_{0,1,1}\theta_{0,2,D}$$

$$p(y = k | \mathbf{x}) \propto p(y = k) \prod_{j=1}^{P} p(x_j | y = k).$$

•
$$\theta_0 = \frac{N_0 + 1}{n + K} = \frac{4}{7}$$
; $\theta_1 = \frac{3}{7}$ $\theta_{k,j,v} = \frac{N_{k,j,v} + 1}{N_k + |f_j|}$

•
$$\vec{x} = [1, D]$$

$$0 p(\vec{x}|y=0) = \theta_{0,1,1}\theta_{0,2,D} = \frac{2}{6} * \frac{1}{8} = \frac{1}{24}$$

$$0 p(\vec{x}|y=1) = \frac{2}{5} * \frac{1}{7} = \frac{2}{35}$$

•
$$p(y = 0|\vec{x}) \propto \frac{4}{7} * \frac{1}{24} \approx 0.0238$$

•
$$p(y = 1|\vec{x}) \propto \frac{3}{7} * \frac{2}{35} \approx 0.0245$$

$$\Rightarrow$$
 predict $y = 1$