CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

• Randomized trials for the null distribution

- Are the means of two samples different?
	- t-tests
	- Permutation testing

• Randomized trials for the null distribution

• Are the means of two samples different?

– t-tests

– Permutation testing

Central Limit Theorem

- Assumptions
	- $-X_1, X_2, ... X_n$ are iid samples
	- From a population with mean *μ*
	- Finite variance *σ*²
- THEN

$$
Z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right)
$$

is a standard normal distribution (i.e. mean 0 and variance 1)

Central Limit Theorem

• Last time we saw that the central limit theorem could be used to estimate a p-value

$$
Z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\bar{X}_n - \mu}{\sigma} \right)
$$

• We first obtain a Z-score, then compute the probability of observing a result *as or more* extreme **under the null hypothesis**

Recap Handout 17

Recap Handont $|7$ $0: \frac{1}{2}$ + 1 $\sqrt{\frac{1}{1-\mu}}$ ENGE Vor(x $\frac{1}{2}$

 $X^n - \overline{M}$ - 0.5 $|3$ $\frac{\sqrt{3}}{10}$ $\frac{0.25}{80}$ $5₁$ Pyalue **B** 3,13 $3,13$ We=10.001745

Better way? Randomized trials

- Die example
	- $-$ n=10 rolls
	- $-$ [4, 2, 3, 1, 3, 1, 3, 3, 3, 1] $-\bar{X}_n = 2.4$
- H_0 : null hypothesis (fair die)
	- What if we don't know mean & variance of null distribution?
- H_1 : is the die weighted toward lower values? (one-sided)

Randomized trials: general idea

1. Run T trials that *mimic* our data under the null hypothesis

roll a fair die

- 2. Record relevant information for each trial **mean of the rolls**
- 3. Count how many times you observe a result as or more extreme than your data (N_e) **any trial with mean less than or equal to 2.4**
- 4. p-value = N_e/T

Randomized trials: general idea

- 1. Run T trials that *mimic* our data under the null hypothesis **roll a fair die** Right now: each group does 1 trial!
- 2. Record relevant information for each trial **mean of the rolls**
- 3. Count how many times you observe a result as or more extreme than your data (N_e) **any trial with mean less than or equal to 2.4**
- 4. p-value = N_e/T

 3.5 2.4 4.1 $T = 20$ 4,5 3.4 ζ ろ. Ne^{-} 3.5 0.05 $3,2$ $-var(ue)$ $\mathcal{Z} \bigcirc$ \mathcal{Z}_{λ} 3.6 3.6 40 3,9 3.8 \leq \cap 3.9 $rac{30}{100}$ V al ile 0.03

Handout 18

• Randomized trials for the null distribution

- Are the means of two samples different? – t-tests
	- Permutation testing

blood pressure XIV-112
before drug: [17, 54, 96, 123, 157, 57 ifference in means example Ofter drug [72,98, 105, 82 m examples Ho all # 15 are drawn from same distribution H : after the drug blood pressure went down Cone-sided $-\overline{X}_{n} = 96 - 112 = -16$

Permutation testing simulate null distribution! $Ne = \pm (\overline{X}_{m}^{(k)} - \overline{X}_{n}^{(k)} \angle -16)$ Dermute the "abels" of the data X in before C 98, 123, 105, 54 1 3 Still n examples

" before" (82, 72, 117, 157, 96 5 examples)

" after" (82, 72, 117, 157, 96 5 examples) -96 Ne' \Rightarrow p-value = \sum boxs = \top for t in T trials (T = 1000-100,000) compute $\overline{\chi}_{m}^{(t)} = \overline{\chi}^{(t)}$ P-value? \circ

 L -tests (don't know τ^2 ?) Sample variance -16 ded $\langle x_{i} - \overline{x_{n}} \rangle$ $N-1$ vitution (in Some dases like: N (0,1) but when you don't $\mathcal{N}(\mathsf{o})$ Know Mariane

DATE SEC difference in means $H_{o}: \mu_{A} = \mu_{B}$ example pops (Khan) $H_i: \mu_A \neq \mu_B$
(2-sided) AB \overline{x}_{n} 1.3m 1.6m 5 S O.S m O.S in $t = \frac{\overline{X}_{A} - \overline{X}_{B}}{\sqrt{\frac{S_{A}^{2}}{n_{A}} + \frac{S_{B}^{2}}{n_{C}}}}$ $\frac{1}{\sqrt{\frac{S_A^2}{n_A} + \frac{S_B^2}{n_B}}} \sim + -\sqrt{1 + \frac{S_A^2}{n_B}}$ Stader $=\frac{1.3-1.6}{2.25}=\sqrt{-2.44}$ $= \frac{1.6}{\sqrt{\frac{0.25}{22} + \frac{0.09}{24}}} = -2.44$ -2.44 $|vw|$ BOARD

• Randomized trials for the null distribution

- Are the means of two samples different?
	- t-tests
	- Permutation testing

The Bootstrap

In an 18th century story by Rudolph Erich Raspe, Baron Munchausen falls to the bottom of a deep lake.

About to drown, he has the idea to lift himself up by pulling on his bootstraps

(In the original German version, he pulls himself up by his hair, left).

Obviously impossible, this story gave its name to a statistical technique (Efron, 1795) that seems magical, in the sense that you can get something (estimates of uncertainty) for nothing!

In general, the bootstrap is an incredibly useful statistical technique – perhaps one of the most useful in all of modern statistics. You should use it everywhere.

Example: estimating the mean

Data, *X* = [2, 3, 4, 8, 0, 6, 1, 10, 2, 4]

From some distribution with mean μ - we want to learn about μ

Estimate of the mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = 4$

How good is this estimate?

Sample standard deviation
$$
s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2} = 3.16
$$

By the central limit theorem, we know that \overline{X} is approximately normally distributed with variance $\frac{s^2}{s^2}$ $\frac{1}{n}$ so we can construct confidence intervals and pvalues for μ etc... "95% of the time, the 95% CI will contain the true value".

Slide: Iain Mathieson

Data, *X* = [2, 3, 4, 8, 0, 6, 1, 10, 2, 4] Compute Mean 1 8 2 4 6 10 1 1 1 8 4.2 Use the means from the resampled data to estimate 1 0 1 6 4 1 4 2 1 2 2.2 the distribution! 95% of the means are 8 1 6 2 6 4 2 4 10 2 4.5 between 2.3 and 5.9 (T=1000) Resample, with replacement, T 200 50 100 150 200 8 3 4 2 10 8 10 8 8 1 6.2 times 150 6 4 6 4 6 4 2 4 3 4 0 4.3 Frequency Frequency 100 … … 50 … … 1 2 3 4 5 6 7

Slide: Iain Mathieson

Mean of resampled data

"Estimate the range (Max—Min)"

Data, *X* = [2, 3, 4, 8, 0, 6, 1, 10, 2, 4]

Compute Range

Use the ranges from the resampled data to estimate the distribution!

Slide: Iain Mathieson

times

Slide: Iain Mathieson

- The key point is that as long as we can resample our data (which we can always do).
- And calculate the thing we want to estimate (which we can almost always do).
- We can bootstrap anything, and get a sense of how good our estimate is.
- We do not need to make any assumptions about the underlying distribution. For example, to apply the central limit theorem.

Slide: Iain Mathieson

- In general resampling or permutation method can answer most of the statistical questions that we are interested in (is the mean zero? are these distributions the same?)
- Why then in intro stats did we learn about t-tests, z-scores, and the central limit theorem instead of permutation tests and bootstrapping?
- Because when statistics was invented in the 1920s, people didn't have computers!

Bootstrap example

Setup: you obtain 0.87 accuracy on a test dataset using a new algorithm

Goal: find a 95% confidence interval for your estimate

