#### CS 260: Foundations of Data Science

#### Prof. Thao Nguyen Fall 2024



Materials by Sara Mathieson

# **Outline for today**

Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

• Connection to cross entropy

# **Outline for today**

Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

Connection to cross entropy

### **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Y |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |

1) Sort examples based on given feature

| 2 | 3 | 7 | 7 | 8 | 10 | 12 |
|---|---|---|---|---|----|----|
| Y | Υ | Y | Ν | Ν | Y  | Y  |

## **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Υ |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |

1) Sort examples based on given feature

| 2 | 3 | 7 | 7 | 8 | 10 | 12 |
|---|---|---|---|---|----|----|
| Y | Y | Y | Ν | Ν | Y  | Y  |

2) Different label with same feature value, collapse to "None"

| 2 | 3 | 7    | 8 | 10 | 12 |
|---|---|------|---|----|----|
| Y | Y | None | Ν | Y  | Y  |

## **Continuous Features**

(do this for the TRAIN only!)

| X  | Υ |
|----|---|
| 10 | Y |
| 7  | Υ |
| 8  | Ν |
| 3  | Y |
| 7  | Ν |
| 12 | Y |
| 2  | Y |

1) Sort examples based on given feature

| 2 | 3 | 7 | 7 | 8 | 10 | 12 |
|---|---|---|---|---|----|----|
| Y | Y | Y | Ν | Ν | Y  | Y  |

2) Different label with same feature value, collapse to "None"

| 2 | 3 | 7    | 8 | 10 | 12 |
|---|---|------|---|----|----|
| Y | Y | None | Ν | Y  | Y  |

3) Whenever label changes, make a feature (use avg)



# **Continuous Features (Handout 14)**

(do this for the TRAIN only!)

| temp | Υ |
|------|---|
| 80   | Y |
| 48   | Y |
| 60   | Ν |
| 48   | Y |
| 40   | Ν |
| 48   | Y |
| 90   | Y |

1) Sort examples based on feature "temp"

2) Different label with same feature value, collapse to "None"

3) Whenever label changes, make a feature (use avg)

# **Continuous Features (Handout 14)**



1) Sort examples based on feature "temp"

| 40 | 48 | 48 | 48 | 60 | 80 | 90 |
|----|----|----|----|----|----|----|
| Ν  | Y  | Y  | Y  | Ν  | Y  | Y  |

2) Different label with same feature value, collapse to "None"

| 40 | 48   | 60 | 80 | 90 |  |
|----|------|----|----|----|--|
| Ν  | None | Ν  | Y  | Y  |  |

3) Whenever label changes, make a feature (use avg)



# **Outline for today**

• Continuous features

Introduction to logistic regression

• Cost function and SGD for logistic regression

Connection to cross entropy

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- If you were forced to use linear regression for this problem, how could you encode y to make it real-valued?

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

**Case Study**: you need to identify the medical condition of a patient in the emergency room on the basis of their symptoms.

Possible conditions (y) are:

- Stroke
- Drug overdose
- Epileptic seizure
- 1) If you were forced to use linear regression for this problem, how could you encode *y* to make it real-valued?

You could choose stroke=0, drug overdose=1, epileptic seizure=2 (or some permutation)

2) What issues arise with making y real-valued?

Assumes some *ordering* of the outcomes that is probably not there!

3) What if you just had two outcomes (i.e. stroke and drug overdose) -- why is linear regression still not a good choice?

The range of a linear function (i.e. y values) is  $[-\infty, \infty]$ , but we want [0, 1]

# Challenger Explosion Data



Image: NASA

| 1  | Date       | Temperature | Damage Incident     |
|----|------------|-------------|---------------------|
| 2  | 04/12/1981 | 66          | 0                   |
| 3  | 11/12/1981 | 70          | 1                   |
| 4  | 3/22/82    | 69          | 0                   |
| 5  | 6/27/82    | 80          | NA                  |
| 6  | 01/11/1982 | 68          | 0                   |
| 7  | 04/04/1983 | 67          | 0                   |
| 8  | 6/18/83    | 72          | 0                   |
| 9  | 8/30/83    | 73          | 0                   |
| 10 | 11/28/83   | 70          | 0                   |
| 11 | 02/03/1984 | 57          | 1                   |
| :  |            |             |                     |
| 23 | 10/30/85   | 75          | 1                   |
| 24 | 11/26/85   | 76          | 0                   |
| 25 | 01/12/1986 | 58          | 1                   |
| 26 | 1/28/86    | 31          | Challenger Accident |

# Logistic (sigmoid) function

# Transforms a continuous real number into a range of (0, 1)



# **Logistic Regression**

- Binary classification  $y \in \{0,1\}$
- Model will be

$$h_{\vec{w}}(\vec{x}) = \frac{1}{1 + e^{-\vec{w}\cdot\vec{x}}}$$

• Classification (already have  $\vec{w}$ ) if  $\vec{w} \cdot \vec{x} \ge 0 \Rightarrow \hat{y} = 1$  $\vec{w} \cdot \vec{x} < 0 \Rightarrow \hat{y} = 0$ 

## Logistic regression example

• If p=1 (one feature), can solve for x

$$w_0 + w_1 x \ge 0$$
$$w_1 x \ge -w_0$$
$$x \ge -\frac{w_0}{w_1}$$

• Ex: 
$$\vec{w} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
  
 $x \le \frac{2}{3}$  means predict  $\hat{y} = 1$ 

# **Outline for today**

• Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

Connection to cross entropy

# How to find $\vec{w}$ ?

- Need a cost function
- Can measure model performance with likelihood

$$L(\vec{w}) = \prod_{i=1}^{n} h_{\vec{w}}(\vec{x_i})^{y_i} \left(1 - h_{\vec{w}}(\vec{x_i})\right)^{(1-y_i)}$$

$$\bigwedge_{i=1}^{n} \prod_{i=1}^{n} h_{\vec{w}}(\vec{x_i})^{y_i} \left(1 - h_{\vec{w}}(\vec{x_i})\right)^{(1-y_i)}$$
want high prob of 1 prob of 0

### Cost function for logistic regression

$$J(\vec{w}) = -\log(L(\vec{w}))$$

minimize negative log-likelihood

$$J(\vec{w}) = -\sum_{i=1}^{n} [y_i \log(h_{\vec{w}}(\vec{x_i})) + (1 - y_i) \log(1 - h_{\vec{w}}(\vec{x_i}))]$$

• Single example  $\vec{x}$ , y

$$J(\vec{w}) = \begin{cases} -\log(h_{\vec{w}}(\vec{x})) \text{ if } y = 1\\ -\log(1 - h_{\vec{w}}(\vec{x})) \text{ if } y = 0 \end{cases}$$

### Single data point

$$J(\vec{w}) = \begin{cases} -\log(h_{\vec{w}}(\vec{x})) \text{ if } y = 1\\ -\log(1 - h_{\vec{w}}(\vec{x})) \text{ if } y = 0 \end{cases}$$



Stochastic Gradient Descent for Logistic Regression (binary classification)

set  $\vec{w} = \vec{0}$ while cost  $J(\vec{w})$  is still changing: shuffle data points for i = 1,...,n:  $\vec{w} \leftarrow \vec{w} - \alpha \nabla J_{\vec{x_i}}(\vec{w})$ store  $J(\vec{w})$  derivative of  $J(\vec{w})$  wrt x<sub>i</sub>

#### 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

#### 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

• Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x}_i) + (1-y_i) \log(1-h_{\boldsymbol{w}}(\boldsymbol{x}_i))$$

#### 3 important pieces to SGD

• Hypothesis function (prediction)

$$h_{\boldsymbol{w}}(\boldsymbol{x}) = p(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w} \cdot \boldsymbol{x}}}$$

• Cost function (want to minimize)

$$J(\boldsymbol{w}) = -\sum_{i=1}^{n} y_i \log h_{\boldsymbol{w}}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\boldsymbol{w}}(\boldsymbol{x}_i))$$

Gradient of cost wrt single data point x<sub>i</sub>

$$\nabla J_{\boldsymbol{x}_i}(\boldsymbol{w}) = (h_{\boldsymbol{w}}(\boldsymbol{x}_i) - y_i)\boldsymbol{x}_i$$

# **Outline for today**

• Continuous features

• Introduction to logistic regression

• Cost function and SGD for logistic regression

• Connection to cross entropy



# **Cost function as Cross Entropy**

- Example
  - true: y=0, 1-y=1
  - pred: h=0.4, 1-h=0.6

 $H(true, pred) = -(0\log(0.4) + 1\log(0.6)) = 0.5$