CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Admin

• Lab 5 due Tuesday (tomorrow)

• Lab 6 posted, due next Monday (Oct 28)

• Midterm 1 returned today

Outline for today

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

• Continuous features (if time)

Outline for today

• Entropy and Shannon encoding

• Information gain for selecting features

Go over Midterm 1

• Continuous features (if time)

Applications of Decision Trees

Examples

Medical diagnostics

• Credit risk analysis

Modeling calendar scheduling preferences

Decision Trees in Chemistry reactions

- Example of decision trees in practice
- Use decision trees to interpret another ML algorithm (SVMs)

Machine-learning-assisted materials discovery using failed experiments

Paul Raccuglia, Katherine C. Elbert, Philip D. F. Adler, Casey Falk, Malia B. Wenny, Aurelio Mollo, Matthias Zeller, Sorelle A. Friedler [™], Joshua Schrier [™] & Alexander J. Norquist [™]

Nature **533**, 73–76 (05 May 2016) | Download Citation *±*

How do we choose the best feature?

Single feature model + evaluate with a ROC curve (Lab 4)

 What feature gives us the most information about the label? (Lab 6)

Idea of Entropy

• Average # of bits needed to send one datapoint

Poisonous & edible mushrooms

Idea of Entropy

• Average # of bits needed to send one datapoint

Poisonous & edible mushrooms

high entropy

low entropy

Entropy

Encoding data

Class year	Fixed-length encoding
senior	00
junior	01
sophomore	10
first year	11

Works!

Encoding data

Class year	Prob (p)
senior	0.5
junior	0.25
sophomore	0.125
first year	0.125

Idea: Use fewer bits to encode values that appear more often

Shannon Encoding

Class year	Prob (p)	Cumulative prob	Cumulative prob in binary
senior	0.5	0	0.000
junior	0.25	0.5	0.100
sophomore	0.125	0.75	0.110
first year	0.125	0.875	0.111
	/ sort highest		

Decimal to binary conversion

- Multiply the decimal point number with 2
- Take note of the number *before* the decimal point in the result
- Multiply the result's value after and including the decimal point with 2
- Repeat until the result is 1
- Place the numbers we noted down after the decimal point in the order we got them

Shannon Encoding

ceiling

H(class year) = 0.5 * 1 + 0.25 * 2 + 0.125 * 3 + 0.125 * 3 = 1.75

Outline for today

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

• Continuous features (if time)

Conditional Entropy

• Quantifies the amount of information needed to describe the outcome of Y given X

$$H(Y|X) = \sum_{v \in vals(X)} p(X = v) H(Y|X = v)$$
feature

e.g., cap shape

$$H(Y|X = v) = -\sum_{c \in vals(Y)} p(Y = c|X = v) \log_2(Y = c|X = v)$$

single feature value

e.g., cap shape = bell

Information Gain

 Reduction in entropy/uncertainty given some information

$$G(Y, X) = H(Y) - H(Y|X)$$
want high want low

Select the feature that maximizes the information gain

Handout 13

Movie	Туре	Length	Director	Famous actors	Liked?
m1	Comedy	Short	Adamson	No	Yes
m2	Animated	Short	Lasseter	No	No
m3	Drama	Medium	Adamson	No	Yes
m4	Animated	Long	Lasseter	Yes	No
m5	Comedy	Long	Lasseter	Yes	No
m6	Drama	Medium	Singer	Yes	Yes
m7	Animated	Short	Singer	No	Yes
m8	Comedy	Long	Adamson	Yes	Yes
m9	Drama	Medium	Lasseter	No	Yes

Handout 13

 $\begin{array}{ll} \mathrm{P(Li=yes)=} & 2/3\\ \mathrm{H(Li)=} & 0.92 \end{array}$

 $\begin{array}{l} H(Li \mid T) = 0.61 \\ H(Li \mid Le) = 0.61 \\ H(Li \mid D) = 0.36 \\ H(Li \mid F) = 0.85 \end{array} \hspace{1.5cm} \mbox{MIN ENTROPY}$

 $\begin{array}{ll} {\rm Gain}({\rm Li},\,{\rm T}) = & 0.92 - 0.61 = 0.31 \\ {\rm Gain}({\rm Li},\,{\rm Le}) = & 0.92 - 0.61 = 0.31 \\ {\rm Gain}({\rm Li},\,{\rm D}) = & 0.92 - 0.36 = 0.56 \\ {\rm Gain}({\rm Li},\,{\rm F}) = & 0.92 - 0.85 = 0.07 \end{array} \ \mbox{MAX INFO GAIN}$

Start of the tree

Outline for today

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

• Continuous features (if time)

Midterm 1 Grades

- 90-100% A
- 80-89% B
- 70-79% C
- Below 70%: please meet with me
- Below 60%: not passing

• Any questions about the exam: bring to me within one week

Midterm solutions not posted online

Outline for today

• Entropy and Shannon encoding

• Information gain for selecting features

• Go over Midterm 1

• Continuous features (if time)

Continuous Features

(do this for the TRAIN only!)

X	Y
10	Y
7	Y
8	Ν
3	Y
7	Ν
12	Y
2	Y

1) Sort examples based on given feature

2	3	7	7	8	10	12
Y	Υ	Y	Ν	Ν	Y	Y

Continuous Features

(do this for the TRAIN only!)

X	Υ
10	Y
7	Υ
8	Ν
3	Y
7	Ν
12	Y
2	Y

1) Sort examples based on given feature

2	3	7	7	8	10	12
Y	Y	Y	Ν	Ν	Y	Y

2) Different label with same feature value, collapse to "None"

2	3	7	8	10	12
Y	Y	None	Ν	Y	Y

Continuous Features

(do this for the TRAIN only!)

X	Υ
10	Υ
7	Υ
8	Ν
3	Y
7	Ν
12	Y
2	γ

1) Sort examples based on given feature

2	3	7	7	8	10	12
Y	Y	Y	Ν	Ν	Y	Y

2) Different label with same feature value, collapse to "None"

2	3	7	8	10	12
Y	Y	None	Ν	Y	Y

3) Whenever label changes, make a feature (use avg)

