CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Admin

• **Midterm 1**

– due at the *beginning* of class on Wednesday

- **Lab 4** grades & feedback posted on Moodle
- **Lab 5** posted
	- due Monday after fall break (Oct 21)

Midterm 1 Notes

• Timed exam: **3 hour limit**. DO NOT open the exam until you are ready to take it for 3 hours!

• You may use one letter page (front and back) "study sheet", handwritten, created by you

• Outside of your "study sheet" and calculator, **no other notes or resources**

• As per the Honor Code, all work must be your own

Informal Quiz (discuss with a partner)

- 1. How would you say $P(A, B)$ in words?
- 2. Based on class on Monday, what is Bayes rule?

 $P(A, B) =$

- 4. If I want to predict the label (y) of an example based on its features (\vec{x}) , which of the following expressions would I want to compute? (circle the best one)
	- (a) $p(\vec{x}, y)$
	- (b) $p(\vec{x} | y)$
	- (c) $p(y | \vec{x})$

Informal Quiz (discuss with a partner)

1. How would you say $P(A, B)$ in words?

Probability of A and B

2. Based on class on Monday, what is Bayes rule?

 $P(A, B) = P(A) P(B|A)$ or $P(B) P(A|B)$

4. If I want to predict the label (y) of an example based on its features (\vec{x}) , which of the following expressions would I want to compute? (circle the best one)

(a) $p(\vec{x}, y)$ (b) $p(\vec{x} | y)$ (c) $p(y | \vec{x})$

Outline for today

• Intro to Bayesian models

• Naïve Bayes algorithm

Outline for today

• Intro to Bayesian models

• Naïve Bayes algorithm

• Identify the evidence, prior, posterior, and likelihood in the equation below

$$
p(y = k|\boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x}|y = k)}{p(\boldsymbol{x})}
$$

• Identify the evidence, prior, posterior, and likelihood in the equation below

$$
p(y = k|\boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x}|y = k)}{p(\boldsymbol{x})}
$$

• **Evidence**: this is the data (features) we actually observe, which we think will help us predict the outcome we're interested in

• Identify the evidence prior, posterior, and likelihood in the equation below

$$
p(y = k|\boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x}|y = k)}{p(\boldsymbol{x})}
$$

• **Prior**: without seeing any evidence (data), what is our prior believe about each outcome (intuition: what is the outcome in the population as a whole?)

• Identify the evidence, prior posterior, and likelihood in the equation below

$$
(p(y=k|\boldsymbol{x})) = \frac{p(y=k)p(\boldsymbol{x}|y=k)}{p(\boldsymbol{x})}
$$

• **Posterior**: this is the quantity we are actually interested in. **Given** the evidence, what is the probability of the outcome?

• Identify the evidence, prior, posterior, and **Clikelihood in the equation below**

$$
p(y=k|\boldsymbol{x}) = \frac{p(y=k)p(\boldsymbol{x}|y=k)}{p(\boldsymbol{x})}
$$

Likelihood: given an outcome, what is the probability of observing this set of features?

Examples

• Computing the probability an email message is **spam**, given the **words** of the email

• Another example: what is the probability of **Trisomy 21** (Down Syndrome), given the amount of sequencing of each chromosome?

Bayesian Model for Trisomy 21 (T₂₁)

Input data are read counts for each chromosome (1,2,…,n):

$$
q_1,q_2,\cdots,q_n=\vec{q}
$$

Bayesian Model for Trisomy 21 (T₂₁)

Input data are read counts for each chromosome (1,2,…,n):

$$
q_1,q_2,\cdots,q_n=\vec{q}
$$

Goal:

$$
\mathbb{P}(T_{21}|\vec{q}) = \frac{\mathbb{P}(\vec{q} | T_{21}) \cdot \mathbb{P}(T_{21})}{\mathbb{P}(\vec{q})}
$$

$$
= \frac{\mathbb{P}(\vec{q} | T_{21}) \cdot \mathbb{P}(T_{21})}{\mathbb{P}(\vec{q} | T_{21}) \cdot \mathbb{P}(T_{21}) + \mathbb{P}(\vec{q} | T_{21}^C) \cdot \mathbb{P}(T_{21}^C)}
$$

Bayesian Model for Trisomy 21 (T₂₁)

Input data are read counts for each chromosome (1,2,…,n):

$$
q_1,q_2,\cdots,q_n=\vec{q}
$$

$$
= \frac{\mathbb{P}(\vec{q} | T_{21}) \cdot \mathbb{P}(T_{21})}{\mathbb{P}(\vec{q} | T_{21}) \cdot \mathbb{P}(T_{21}) + \mathbb{P}(\vec{q} | T_{21}^C) \cdot \mathbb{P}(T_{21}^C)}
$$

Prior:

 $P(T_{21})$

Outline for today

• Recap Bayesian models

• Naïve Bayes algorithm

Real-world example of Naïve Bayes

"A Comparison of Event Models for Naive Bayes Text Classification" (5649 citations!)

[http://www.kamalnigam.com/papers/multinomial](http://www.kamalnigam.com/papers/multinomial-aaaiws98.pdf) -aaaiws98.pdf

Goal: text classification (classify documents into topics based on the words as features)

Real-world example of Naïve Bayes

• Single document

• Multi-class response
$$
y \in \{1, 2, ..., K\}
$$

$$
\vec{x} = [x_1, x_2, ..., x_p]^T
$$

$$
y \in \{1, 2, ..., K\}
$$

• Goal: Classification $\hat{y} = argmax_{k=1,\dots,K} p(y = k|\vec{x})$

Bayesian Model

$$
p(y = k|\vec{x}) = \frac{p(y = k)p(\vec{x}|y = k)}{p(\vec{x})}
$$

Naïve Bayes example

$$
p(\vec{x}|y = k) = p(x_1, x_2, x_3, ..., x_p | y = k)
$$

A B

$$
= p(x_3, ..., x_p | y = k) p(x_2 | x_3, ..., x_p, y = k)
$$

$$
p(x_1 | x_2, ..., x_p, y = k)
$$

Naïve Bayes assumption

Conditional Independence: "feature j is independent from all other features given label k"

$$
p(x_1, x_2 | y) = p(x_1 | y) p(x_2 | x_1, y)
$$

x₁ = 4 legs
x₂ = fur assume $p(x_2 | x_1, y) = p(x_2 | y)$
y = cat

$$
\Rightarrow p(x_1, x_2 | y) = p(x_1 | y) p(x_2 | y)
$$

Naïve Bayes example

$$
p(\vec{x}|y = k) = p(x_p|y = k)p(x_{p-1}|y = k) \dots p(x_2|y = k) p(x_1|y = k)
$$

= $\prod_{j=1}^{p} p(x_j|y = k)$

$$
p(y = k|\vec{x}) \propto p(y = k) \prod_{j=1}^{p} p(x_j|y = k)
$$

proportional to

Obtaining $p(y=k)$ & $p(x_j|y=k)$

Estimate based on training data

- θ_k = estimate for p(y=k)
- $\theta_{k,j,\nu}$ = estimate for p($x_j=v_j|y=k$) feature j value v class k

Let $N_k = #$ of examples with label k, we could define $\theta_k =$ N_k \boldsymbol{n}

What happens if $N_k = 0$?

Laplace smoothing

• Technique to handle zero probability

•
$$
\theta_k = \frac{N_k + 1}{n + K}; \quad \sum \theta_k = \sum \frac{N_k + 1}{n + K} = \frac{1}{n + K}(n + K)
$$

• Similarly, let $N_{k,i,v} = #$ of examples with feature $j =$ value v and class label k

$$
\theta_{k,j,\nu} = \frac{N_{k,j,\nu} + 1}{N_k + |f_j|}
$$

of feature values

for feature j

Handout 11

Say we have two tests for a specific disease. Each test (features f_1, f_2) can come back either positive "pos" or negative "neg", and the true underlying condition of the patient is represented by y ($y = 1$ is "healthy" and $y = 2$ is "disease"). We observe this training data where $n = 7$ and $p = 2$.

1. To estimate the probability $p(y = k)$, for $k = 1, 2, \dots, K$, we will use the formula:

$$
\theta_k = \frac{N_k + 1}{n + K}
$$

where N_k is the count ("Number") of data points where $y = k$. Compute θ_1 and θ_2 . What would θ_1 and θ_2 be if we in fact had no training data?

 f_2 \int $\vec{\widetilde{\chi}}$ neg
Pos $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$ Pos
Pos
Pos
Pos
Pos
Pos
Pos
Pos $\overline{7}$ neg
neg
neg
neg
neg 4 \overline{c} $\overline{9}$ \sum \overline{C}

Handout 11

2. To estimate the probabilities $p(x_j = v | y = k)$ for all features j, values v, and class label k, we will use the formula:

$$
\theta_{k,j,v} = \frac{N_{k,j,v}+1}{N_k+|f_j|}
$$

where $N_{k,j,v}$ is the count of data points where $y = k$ and $x_j = v$, and $|f_j|$ is the number of possible values that f_i (feature j) can take on. Fill in the following tables with these θ values.

$y =$	pos	neg	$y=2$	pos	neg
. т J					
J ₂			J_{2}		

