CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Admin

- Midterm 1
 - due at the *beginning* of class on Wednesday
- Lab 4 grades & feedback posted on Moodle
- Lab 5 posted
 - due Monday after fall break (Oct 21)

Midterm 1 Notes

 Timed exam: 3 hour limit. DO NOT open the exam until you are ready to take it for 3 hours!

 You may use one letter page (front and back) "study sheet", handwritten, created by you

 Outside of your "study sheet" and calculator, no other notes or resources

• As per the Honor Code, all work must be your own

Informal Quiz (discuss with a partner)

- 1. How would you say P(A, B) in words?
- 2. Based on class on Monday, what is Bayes rule?

P(A,B) =

- 4. If I want to predict the label (y) of an example based on its features (\vec{x}) , which of the following expressions would I want to compute? (circle the best one)
 - (a) $p(\vec{x}, y)$
 - (b) $p(\vec{x} \mid y)$
 - (c) $p(y \mid \vec{x})$

Informal Quiz (discuss with a partner)

1. How would you say P(A, B) in words?

Probability of A and B

2. Based on class on Monday, what is Bayes rule?

P(A,B) = P(A) P(B|A) or P(B) P(A|B)

- 4. If I want to predict the label (y) of an example based on its features (\vec{x}) , which of the following expressions would I want to compute? (circle the best one)
 - (a) $p(\vec{x}, y)$ (b) $p(\vec{x} \mid y)$ (c) $p(y \mid \vec{x})$

Outline for today

• Intro to Bayesian models

• Naïve Bayes algorithm

Outline for today

• Intro to Bayesian models

Naïve Bayes algorithm

 Identify the evidence, prior, posterior, and likelihood in the equation below

$$p(y = k | \boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x} | y = k)}{p(\boldsymbol{x})}$$

 Identify the evidence, prior, posterior, and likelihood in the equation below

$$p(y = k | \boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x} | y = k)}{p(\boldsymbol{x})}$$

 Evidence: this is the data (features) we actually observe, which we think will help us predict the outcome we're interested in

 Identify the evidence, prior posterior, and likelihood in the equation below

$$p(y = k | \boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x} | y = k)}{p(\boldsymbol{x})}$$

 Prior: without seeing any evidence (data), what is our prior believe about each outcome (intuition: what is the outcome in the population as a whole?)

 Identify the evidence, prior posterior, and likelihood in the equation below

$$p(y = k | \boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x} | y = k)}{p(\boldsymbol{x})}$$

 Posterior: this is the quantity we are actually interested in. *Given* the evidence, what is the probability of the outcome?

 Identify the evidence, prior, posterior, and likelihood in the equation below

$$p(y = k | \boldsymbol{x}) = \frac{p(y = k)p(\boldsymbol{x} | y = k)}{p(\boldsymbol{x})}$$

 Likelihood: given an outcome, what is the probability of observing this set of features?

Examples

• Computing the probability an email message is **spam**, given the **words** of the email

 Another example: what is the probability of Trisomy 21 (Down Syndrome), given the amount of sequencing of each chromosome?

Bayesian Model for Trisomy 21 (T_{21})

Input data are read counts for each chromosome (1,2,...,n):

$$q_1, q_2, \cdots, q_n = \vec{q}$$

Bayesian Model for Trisomy 21 (T_{21})

Input data are read counts for each chromosome (1,2,...,n):

$$q_1, q_2, \cdots, q_n = \vec{q}$$

Goal:

$$\mathbb{P}(T_{21}|\vec{q}\,) = \frac{\mathbb{P}(\vec{q}\,|T_{21})\cdot\mathbb{P}(T_{21})}{\mathbb{P}(\vec{q}\,)}$$

$$= \frac{\mathbb{P}(\vec{q} \mid T_{21}) \cdot \mathbb{P}(T_{21})}{\mathbb{P}(\vec{q} \mid T_{21}) \cdot \mathbb{P}(T_{21}) + \mathbb{P}(\vec{q} \mid T_{21}^C) \cdot \mathbb{P}(T_{21}^C)}$$

Bayesian Model for Trisomy 21 (T_{21})

Input data are read counts for each chromosome (1,2,...,n):

$$q_1, q_2, \cdots, q_n = \vec{q}$$

$$= \frac{\mathbb{P}(\vec{q} \mid T_{21}) \cdot \mathbb{P}(T_{21})}{\mathbb{P}(\vec{q} \mid T_{21}) \cdot \mathbb{P}(T_{21}) + \mathbb{P}(\vec{q} \mid T_{21}^C) \cdot \mathbb{P}(T_{21}^C)}$$

Maternal Age	Trisomy 21 A	II Trisomies
20	1 in 1,667	1 in 526
21	1 in 1,429	1 in 526
22	1 in 1,429	1 in 500
23	1 in 1,429	1 in 500
24	1 in 1,250	1 in 476
25	1 in 1,250	1 in 476
26	1 in 1,176	1 in 476
27	1 in 1,111	1 in 455
28	1 in 1,053	1 in 435
29	1 in 1,000	1 in 417
30	1 in 952	1 in 384
31	1 in 909	1 in 384
32	1 in 769	1 in 323
33	1 in 625	1 in 286
34	1 in 500	1 in 238
35	1 in 385	1 in 192
36	1 in 294	1 in 156
37	1 in 227	1 in 127
38	1 in 175	1 in 102
39	1 in 137	1 in 83
40	1 in 106	1 in 66
41	1 in 82	1 in 53
42	1 in 64	1 in 42
43	1 in 50	1 in 33
44	1 in 38	1 in 26
45	1 in 30	1 in 21
46	1 in 23	1 in 16
47	1 in 18	1 in 13
48	1 in 14	1 in 10
49	1 in 11	1 in 8

Prior:

P(*T*₂₁)

Outline for today

• Recap Bayesian models

Naïve Bayes algorithm

Real-world example of Naïve Bayes

"A Comparison of Event Models for Naive Bayes Text Classification" (5649 citations!)

http://www.kamalnigam.com/papers/multinomial -aaaiws98.pdf

Goal: text classification (classify documents into topics based on the words as features)

Real-world example of Naïve Bayes

Single document

• Multi-class response

$$\vec{x} = [x_1, x_2, \dots, x_p]$$

y $\in \{1, 2, \dots, K\}$

• Goal: Classification $\hat{y} = argmax_{k=1,...,K} p(y = k | \vec{x})$

Bayesian Model

$$p(y=k|\vec{x}) = \frac{p(y=k)p(\vec{x}|y=k)}{p(\vec{x})}$$
 can ignore

Naïve Bayes example

$$p(\vec{x}|y = k) = p(x_1, x_2, x_3, ..., x_p | y = k)$$

$$P(A,B) = P(B)P(A|B)$$

$$P(A,B) = P(B)P(A|B)$$

$$= p(x_3, ..., x_p | y = k) p(x_2 | x_3, ..., x_p, y = k)$$

$$p(x_1 | x_2, ..., x_p, y = k)$$

Naïve Bayes assumption

Conditional Independence: "feature j is independent from all other features given label k"

$$p(x_1, x_2|y) = p(x_1|y)p(x_2|x_1, y)$$

$$x_1 = 4 \text{ legs}$$

$$x_2 = \text{fur} \qquad \text{assume} \ p(x_2|x_1, y) = p(x_2|y)$$

$$y = \text{cat}$$

$$\Rightarrow p(x_1, x_2|y) = p(x_1|y)p(x_2|y)$$

Naïve Bayes example

$$p(\vec{x}|y=k) = p(x_p|y=k)p(x_{p-1}|y=k) \dots p(x_2|y=k) p(x_1|y=k)$$
$$= \prod_{j=1}^p p(x_j|y=k)$$

Naïve Bayes Model

$$p(y = k | \vec{x}) \propto p(y = k) \prod_{j=1}^{p} p(x_j | y = k)$$

proportional to

Obtaining p(y=k) & p(x_i|y=k)

Estimate based on training data

- θ_k = estimate for p(y=k)
- $\theta_{k,j,v} = \text{estimate for } p(x_j = v | y = k)$ feature j value v

Let N_k = # of examples with label k, we could define $\theta_k = \frac{N_k}{n}$

What happens if $N_k = 0$?

Laplace smoothing

Technique to handle zero probability

•
$$\theta_k = \frac{N_k + 1}{n + K}; \quad \sum \theta_k = \sum \frac{N_k + 1}{n + K} = \frac{1}{n + K} (n + K)$$

 Similarly, let N_{k,j,v} = # of examples with feature j = value v and class label k

$$\theta_{k,j,v} = \frac{N_{k,j,v} + 1}{N_k + |f_j|}$$

of feature values for feature j

Handout 11

Say we have two tests for a specific disease. Each test (features f_1 , f_2) can come back either positive "pos" or negative "neg", and the true underlying condition of the patient is represented by y (y = 1 is "healthy" and y = 2 is "disease"). We observe this training data where n = 7 and p = 2:

$oldsymbol{x}$	f_1	f_2	$\mid y$
$oldsymbol{x}_1$	pos	neg	1
$oldsymbol{x}_2$	pos	pos	2
$oldsymbol{x}_3$	pos	neg	2
$oldsymbol{x}_4$	neg	neg	1
$oldsymbol{x}_5$	pos	neg	2
$oldsymbol{x}_6$	neg	neg	1
$oldsymbol{x}_7$	neg	pos	2

1. To estimate the probability p(y = k), for $k = 1, 2, \dots, K$, we will use the formula:

$$\theta_k = \frac{N_k + 1}{n + K}$$

where N_k is the count ("Number") of data points where y = k. Compute θ_1 and θ_2 . What would θ_1 and θ_2 be if we in fact had *no* training data?

£, \searrow heg pos pos pos pos heg pos heg heg neg neg neg pos 9 2 2

Handout 11

2. To estimate the probabilities $p(x_j = v | y = k)$ for all features j, values v, and class label k, we will use the formula:

$$\theta_{k,j,v} = \frac{N_{k,j,v} + 1}{N_k + |f_j|}$$

where $N_{k,j,v}$ is the count of data points where y = k and $x_j = v$, and $|f_j|$ is the number of possible values that f_j (feature j) can take on. Fill in the following tables with these θ values.

y = 1	pos	neg	y = 2	pos	neg
f_1			f_1		
f_2			f_2		

