Naive Bayes

(find and work with a partner)

Say we have two tests for a specific disease. Each test (features f_1 , f_2) can come back either positive "pos" or negative "neg", and the true underlying condition of the patient is represented by y (y = 1 is "healthy" and y = 2 is "disease"). We observe this training data where n = 7 and p = 2:

\boldsymbol{x}	f_1	f_2	y
$oldsymbol{x}_1$	pos	neg	1
$oldsymbol{x}_2$	pos	pos	2
$oldsymbol{x}_3$	pos	neg	2
$oldsymbol{x}_4$	neg	neg	1
$oldsymbol{x}_5$	pos	neg	2
$oldsymbol{x}_6$	neg	neg	1
$oldsymbol{x}_7$	neg	pos	2

1. To estimate the probability p(y = k), for $k = 1, 2, \dots, K$, we will use the formula:

$$\theta_k = \frac{N_k + 1}{n + K}$$

where N_k is the count ("Number") of data points where y = k. Compute θ_1 and θ_2 . What would θ_1 and θ_2 be if we in fact had *no* training data?

2. To estimate the probabilities $p(x_j = v | y = k)$ for all features j, values v, and class label k, we will use the formula:

$$\theta_{k,j,v} = \frac{N_{k,j,v} + 1}{N_k + |f_j|}$$

where $N_{k,j,v}$ is the count of data points where y = k and $x_j = v$, and $|f_j|$ is the number of possible values that f_j (feature j) can take on. Fill in the following tables with these θ values.

y = 1	pos	neg	y = 2	pos	neg
f_1			f_1		
$\frac{f_2}{f_2}$			f_{α}		
J2			J2		