CS 260: Foundations of Data Science

Prof. Thao Nguyen Fall 2024

Materials by Sara Mathieson

Admin

 Lab 2 grades & feedback will be posted on Wednesday

• Lab 3 due tonight

• Lab 4 posted, due next Monday at midnight

Lecture Notes

Peer Tutoring

• Student tutors (Fejiro Anigbro, Darshan Mehta)

• Flexible hours

• Free!

OCTOBER 7,8 & 9TH | 6-8PM EST

Sign up for a 30 minute virtual informational interview with a Tri-Co alum to gain tech career insights!

Alumni will represent various tech roles including software engineering and development, data science, tech consulting, product management and biotech.

OCT 7	OCT 8	OCT 9				
Accenture • FERMAT Commerce • Grubhub	Bristol Myers Squibb Community.com C3 Presents (Live Nation) Opower (Oracle)	The Walt Disney Company Fresh Tracks Insights Meta Grubhub				
TRI-COLLEGE RECRUITING CONSORTIUM HAVERFORD BRYN MAWR SWARTH MORE						

Outline for today

• Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation
- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Outline for today

• Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation
- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Stochastic Gradient Descent for Linear Regression

Key Idea: take the derivative of one datapoint at a time and use that to update w

Stochastic Gradient Descent for Linear Regression

Choosing the step size alpha

- may overshoot minimum
- may fail to converge (may even diverge)

Slide: modified from Jessica Wu Based on slide by Eric Eaton [Originally by Andrew Ng]

Pros and Cons

Gradient Descent

- requires multiple iterations
- need to choose α
- works well when *p* is large
- can support online learning

(Analytic Solution)

Normal Equations

- non-iterative
- no need for α
- slow if *p* is large
 - matrix inversion is $O(p^3)$

Outline for today

• Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation
- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Binary classification examples

- Transactions that indicate credit card fraud
- Accounts that are bots
- Detecting which scans show tumors
- Prenatal test for Down's Syndrome
- Finding genes under natural selection
- Regions of the environment that contains the object the robot is searching for

In all these examples, we are trying to find unusual items ("needle in a haystack") -- we call these *positives*

Introduction to Classification

Introduction to Classification

new idea i use probabilities to classify test examples threshold 0.5 => Ytest = ino threshold 0.25=> N+est = (+) disease Ppos > threshold =) classify @

Handout 7

Outline for today

• Recap SGD (stochastic gradient descent)

- Introduction to classification
 - Decision tree models
 - Probabilistic interpretation
- Evaluation Metrics
 - Confusion matrices
 - Precision and recall
 - ROC curves

Goals of Evaluation

• Think about what metrics are important for the problem at hand

 Compare different methods or models on the same problem

Common set of tools that other researchers/users can understand

Training and Testing (high-level idea)

- Separate data into "train" and "test"
 - -n = num training examples
 - -m = num testing examples
- Fit (create) the model using training data
 e.g. sea_ice_1979-2012.csv
- Evaluate the model using testing data
 e.g. sea_ice_2013-2020.csv

Note: all the same model, different thresholds!

=

Allwary -

+

50

 \bigvee

m

30

C

699

acci

80 negatives 20 positives

0

Thresh

			Predicted class		
		Negative		Positive	
True class	Negative	True neរ្ (TN	gative)	ا False (ا	positive FP)
	Positive	False ne (FN	gative)	True p (1	oositive TP)

False Positive Rate:

```
FP/(TN+FP) = FP/N
```

Precision and Recall

 Precision: of all the "flagged" examples, which ones are actually relevant (i.e. positive)?
(Purity)

 <u>Recall</u>: of all the relevant results, which ones did I actually return?

(Completeness)