
CS 260: Foundations of Data Science

Prof. Thao Nguyen

Fall 2024

Materials by Sara Mathieson



Admin

• Roster should hopefully be finalized by end of week

– If you are #3 or higher on the waitlist, please find 
another class (CS260 will be offered again in the Spring!)

• Lab 1 due Tuesday night

• Extra office hours: 3—4pm on Friday (H110)

• Regular office hours: 10—11:30am on Tuesday 
(H110)



Note-cards from Tuesday

• Practice problems and group work: many people 
mentioned these – will try to have every class

• Demos and videos: several people mentioned 
these – I will try!

• Access to myself and TAs: some people 
mentioned this – TA hours have been posted

– Friday 11am-1pm hours this week



AAAI-25 Undergraduate Consortium

• February 25-26, 2025

• Mentoring program for undergraduate 
students interested in a career in AI research

• Application deadline: September 30, 2024

https://aaai.org/conference/aaai/aaai-25/aaai-25-uc-call/


Introductions

(if you could be a data scientist for any type of data, what 
would it be?)



Python Demo

• Matplotlib

• Numpy

• Dictionaries



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

dot = Circle(Point(x,y), r)



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

• We can access the instance’s data using methods

r = dot.get_radius()

dot = Circle(Point(x,y), r)



Classes in Python represent the same idea 

as classes in Java

• Classes allow us to encapsulate common data 

structures and actions so we don’t have to define them 

over and over again

• Example: say we have two classes: Point and Circle

• We can create a new instance of a class using the 

constructor

• We can access the instance’s data using methods

• We can use/modify class instances using methods

r = dot.get_radius()

dot = Circle(Point(x,y), r)

dot.move(dx,dy)



Motivation for classes: LOLs

• List-of-lists let us keep track of things that 

should be “together”, but they get 

cumbersome to modify:
Type of pie

Number of slices



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract

• Encapsulated (student is represented as one 

thing, a list), but not abstract



Motivation for classes: encapsulation and abstraction

• Neither encapsulated (data for one student is 

spread over multiple objects), nor abstract

• Encapsulated (student is represented as one 

thing, a list), but not abstract

• Both abstract and encapsulated

Should be:
get_name()
get_year()



• Interface (how you interact with something) is 

consistent even if the internal details change.

1) If you change the engine in your car, you still drive it 

the same way – don’t need to know how the engine 

works.

2) In online shopping you have a “Cart”, which is an 

abstract concept and is roughly the same across sites. 

Probably represented as a list underneath but user 

doesn’t need to know.

Advantages of encapsulation/abstraction



“Pie” class example



“Pie” class example



“Pie” class example



TwitterUser class



Handout 2

• Find and work with a partner



Recap Die class

• Defining the Constructor: builds an instance of 

the class (self), and initializes all instance 

variables (self.xxx)



Recap Die class

• Defining the Constructor: builds an instance of 

the class (self), and initializes all instance 

variables (self.xxx)

• Using the Constructor: assign the new object to a 

variable, making the “self” placeholder a 

concrete instance



• Defining Methods: always use “self” as the first 

argument (placeholder for the instance). Getters are 

a type of method that return instance variables or 

their derivatives.

Recap Die class



• Defining Methods: always use “self” as the first 

argument (placeholder for the instance). Getters are 

a type of method that return instance variables or 

their derivatives.

• Using Methods: instance.method(…), don’t use self

Recap Die class



• Defining the __str__ method: no print(..) statements! 

Build and return a single string. (no arguments 

besides self)

Recap Die class



• Defining the __str__ method: no print(..) statements! 

Build and return a single string. (no arguments 

besides self)

• Using the __str__ method: simply call print(instance)!

Recap Die class



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Example of reading in data

colleges.txt



File reading demo



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation



Numpy

• Numerical Python

• Designed for fast computation on arrays

• Implemented in C underneath

• pip3 install numpy (on the terminal) OR

python3 –m pip install numpy



A B

np.concatenate((A,B), axis=0)

A

B

np.concatenate((A,B), axis=1)

A B

ax
is

=
0

axis=1

must match along axis 1

must match 
along axis 0

Numpy concatenation



A
C

np.concatenate((A,C), axis=0)

A

np.concatenate((A,C), axis=1)

A

ax
is

=
0

axis=1

must match along axis 1

Error: must 
match along 
axis 0!

C

C

Numpy concatenation



Outline for today

• Object-oriented programming (OOP) in Python

• Reading in data in Python

• Numerical Python (numpy)

• If time: begin data representation


