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Admin

• Lab 8 grades & feedback posted on Moodle

• End-of-semester survey (link on Piazza)
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Problems with K-means

• Does not account for different cluster sizes, 

variances, and shapes

• Does not allow points to belong to multiple clusters

• Not generative (cannot create a new data point)



Discriminative vs. Generative Algorithms

• Discriminative: finds a decision boundary

– Logistic regression, K-means

• Generative: estimates probability distributions 

– Naïve Bayes, Gaussian Mixture Models

Figure: Ameet Soni



Gaussian Mixture Models (GMMs)
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Gaussian Mixture Models (GMMs)

• Initialization step: for each cluster
o Probability 𝜋𝑘 = 1/𝐾 (uniform prior)

o Mean Ԧ𝜇𝑘 = choose random point

o Variance 𝜎𝑘
2 = sample variance of all points closest to each mean

• E-step: “soft” assignment
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Gaussian Mixture Models (GMMs)

• M-step: parameter update
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https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Example of GMMs with different covariance 
constraints on the Iris flower data

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py


Generative Process

• Sample cluster k using 𝜋1, 𝜋2, … , 𝜋𝑘

• Sample x from 𝑁( Ԧ𝜇𝑘 , 𝜎𝑘
2)
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KDE (Kernel Density Estimation)

Figure 11.9 from MML textbook



KDE (Kernel Density Estimation)
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Commonly used kernel functions

Wikipedia



Width selection

Wikipedia

Kernel density estimate (KDE) with different 
bandwidths of a random sample of 100 points 
from a standard normal distribution. Grey: true 
density (standard normal). Red: KDE with 
h=0.05. Black: KDE with h=0.337. Green: KDE 
with h=2.
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Types of missing data

• MCAR: Missing Completely At Random. Not 
related to:
– Specific values

– Observed responses

• MAR: Missing At Random. Not related to:
– Specific values

• MNAR: Missing Not At Random

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

• Try to prevent the problem in the first place
– Careful study design, follow-up with participants, etc

• Omit rows with missing data (reduces n)

• Omit only when value is needed
– e.g. Naïve Bayes, per-feature estimates

• Mean substitution (per feature)

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

• Imputation

– Use similar examples to guess the missing values

– Can be done locally or globally

• Last observation carried forward

– Useful for time-series data

Reference: “The prevention and handling of the missing data” Kang (2013)
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What society thinks I do What other computer 
scientists think I do

What I 
think I do

What I 
really do

What mathematicians think I do

What my boss thinks I do

MACHINE LEARNING
Adapted from: “Know Your Meme”



Biological Inspiration for
Neural Networks

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/



Goal: learn from complicated inputs
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Idea: transform data into lower dimension
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identity?
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History of Neural Networks

• Perceptron can be interpreted as a simple 
neural network

• Misconceptions about the weaknesses of 
perceptrons contributed to declining funding 
for NN research

• Difficulty of training multi-layer NNs 
contributed to second setback

• Mid 2000’s: breakthroughs in NN training 
contribute to rise of “deep learning”



2006: Hinton and Salakhutdinov  
make a break-through in 

initializing deep learning networks 

Number of papers that mention 
“deep learning” over time
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Big picture for today

• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to 
approximate a function from our inputs to our 
outputs

• We will train our network by asking it to minimize 
the loss between its output and the true output

• We will use SGD-like approaches to minimize loss
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Fully Connected Neural Network Architecture
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• 𝐻(1) = 𝑎 𝑊(1)𝑋𝑇 + 𝐵(1)

• 𝐻(2) = 𝑎 𝑊(2)𝐻(1) + 𝐵(2)

• ො𝑦 = 𝑎 𝑊(3)𝐻(2) + 𝑏(3)

Layer Output

activation function 𝑝1 × 𝑝

𝑝1 = # of nodes in layer 1

𝑝 × 𝑛 𝑝1 × 𝑛

𝑝1 × 𝑛


