
CS 260: Foundations of Data Science

Prof. Thao Nguyen

Fall 2025

Materials by Sara Mathieson

Admin

• Lab 8 grades & feedback posted on Moodle

• End-of-semester survey (link on Piazza)

Outline for today

• Gaussian Mixture Models (GMMs)

• Kernel Density Estimation (KDE)

• Missing data

• Neural networks

Outline for today

• Gaussian Mixture Models (GMMs)

• Kernel Density Estimation (KDE)

• Missing data

• Neural networks

Problems with K-means

• Does not account for different cluster sizes,

variances, and shapes

• Does not allow points to belong to multiple clusters

• Not generative (cannot create a new data point)

Discriminative vs. Generative Algorithms

• Discriminative: finds a decision boundary

– Logistic regression, K-means

• Generative: estimates probability distributions

– Naïve Bayes, Gaussian Mixture Models

Figure: Ameet Soni

Gaussian Mixture Models (GMMs)

𝑝 Ԧ𝑥𝑖 = ෍

𝑘=1

𝐾

𝑝(Ԧ𝑥𝑖 , 𝑘) = ෍

𝑘=1

𝐾

𝑝(𝑘)𝑝 Ԧ𝑥𝑖 𝑘 = ෍

𝑘=1

𝐾

𝜋𝑘𝑁 Ԧ𝑥𝑖 Ԧ𝜇𝑘 , 𝜎𝑘
2

cluster
membership

prior over cluster sizes

• Maximize likelihood:

𝐿 𝑋 =ෑ

𝑖=1

𝑛

𝑝 Ԧ𝑥𝑖 =ෑ

𝑖=1

𝑛

෍

𝑘=1

𝐾

𝜋𝑘𝑁 Ԧ𝑥𝑖 Ԧ𝜇𝑘 , 𝜎𝑘
2

Model parameters

assume Gaussian
distribution

Gaussian Mixture Models (GMMs)

• Initialization step: for each cluster
o Probability 𝜋𝑘 = 1/𝐾 (uniform prior)

o Mean Ԧ𝜇𝑘 = choose random point

o Variance 𝜎𝑘
2 = sample variance of all points closest to each mean

• E-step: “soft” assignment

𝑤𝑖𝑘 = 𝑝 𝑘 Ԧ𝑥𝑖 =
𝑝 𝑘 𝑝(Ԧ𝑥𝑖|𝑘)

𝑝 Ԧ𝑥𝑖
=

𝜋𝑘𝑁(Ԧ𝑥𝑖| Ԧ𝜇𝑘 , 𝜎𝑘
2)

σ𝑗=1
𝐾 𝜋𝑗𝑁(Ԧ𝑥𝑖| Ԧ𝜇𝑗 , 𝜎𝑗

2)

probability that Ԧ𝑥𝑖
came from cluster k

Gaussian Mixture Models (GMMs)

• M-step: parameter update

𝑁𝑘 = σ𝑖=1
𝑛 𝑤𝑖𝑘 (# of points assigned to cluster k)

o 𝜋𝑘 =
𝑁𝑘

𝑛

o Ԧ𝜇𝑘 =
1

𝑁𝑘
σ𝑖=1
𝑛 𝑤𝑖𝑘 Ԧ𝑥𝑖

o 𝜎𝑘
2 =

1

𝑁𝑘
σ𝑖=1
𝑛 𝑤𝑖𝑘 Ԧ𝑥𝑖 − Ԧ𝜇𝑘

2

use updated mean

Figu
re 1

1
.7

 fro
m

 M
M

L textb
o

o
k

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Example of GMMs with different covariance
constraints on the Iris flower data

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Generative Process

• Sample cluster k using 𝜋1, 𝜋2, … , 𝜋𝑘

• Sample x from 𝑁(Ԧ𝜇𝑘 , 𝜎𝑘
2)

Outline for today

• Gaussian Mixture Models (GMMs)

• Kernel Density Estimation (KDE)

• Missing data

• Neural networks

KDE (Kernel Density Estimation)

Figure 11.9 from MML textbook

KDE (Kernel Density Estimation)

𝑝 𝑥 =
1

𝑛ℎ
෍

𝑖=1

𝑛

𝑘
𝑥 − 𝑥𝑖
ℎ

given point
width:
smoothing
parameter

kernel: weighting function

Commonly used kernel functions

Wikipedia

Width selection

Wikipedia

Kernel density estimate (KDE) with different
bandwidths of a random sample of 100 points
from a standard normal distribution. Grey: true
density (standard normal). Red: KDE with
h=0.05. Black: KDE with h=0.337. Green: KDE
with h=2.

Outline for today

• Gaussian Mixture Models (GMMs)

• Kernel Density Estimation (KDE)

• Missing data

• Neural networks

Types of missing data

• MCAR: Missing Completely At Random. Not
related to:
– Specific values

– Observed responses

• MAR: Missing At Random. Not related to:
– Specific values

• MNAR: Missing Not At Random

Reference: “The prevention and handling of the missing data” Kang (2013)

Techniques for handling missing data

• Try to prevent the problem in the first place
– Careful study design, follow-up with participants, etc

• Omit rows with missing data (reduces n)

• Omit only when value is needed
– e.g. Naïve Bayes, per-feature estimates

• Mean substitution (per feature)

Reference: “The prevention and handling of the missing data” Kang (2013)

Techniques for handling missing data

• Imputation

– Use similar examples to guess the missing values

– Can be done locally or globally

• Last observation carried forward

– Useful for time-series data

Reference: “The prevention and handling of the missing data” Kang (2013)

Outline for today

• Gaussian Mixture Models (GMMs)

• Kernel Density Estimation (KDE)

• Missing data

• Neural networks

What society thinks I do What other computer
scientists think I do

What I
think I do

What I
really do

What mathematicians think I do

What my boss thinks I do

MACHINE LEARNING
Adapted from: “Know Your Meme”

Biological Inspiration for
Neural Networks

Figure: Stanford CS231n http://cs231n.github.io/neural-networks-1/

Goal: learn from complicated inputs

X1

X4

X2

X3

X6

X5

input data

? Y1

Y2

Y3

parameters

(smiling)

(glasses)

(eye size)

glasses?

smiling?

identity?

X1

X4

X2

X3

X6

X5

input data

Y1

Y2

Y3

parametershidden layer

(smiling)

(glasses)

(eye size)

Idea: transform data into lower dimension

glasses?

smiling?

identity?

X1

X4

X2

X3

X6

X5

input data

Y1

Y2

Y3

hidden

layer 2

parameters

(smiling)

(glasses)

(eye size)

hidden

layer 1

Multi-layer networks = “deep learning”

glasses?

smiling?

identity?

History of Neural Networks

• Perceptron can be interpreted as a simple
neural network

• Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

• Difficulty of training multi-layer NNs
contributed to second setback

• Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”

2006: Hinton and Salakhutdinov
make a break-through in

initializing deep learning networks

Number of papers that mention
“deep learning” over time

Big picture for today

• Neural networks can approximate any function!

Big picture for today

• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

Big picture for today

• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

• We will train our network by asking it to minimize
the loss between its output and the true output

Big picture for today

• Neural networks can approximate any function!

• For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

• We will train our network by asking it to minimize
the loss between its output and the true output

• We will use SGD-like approaches to minimize loss

Fully Connected Neural Network Architecture

…

Fully Connected Neural Network Architecture

…

𝒙𝟏

𝒙𝟐

𝒙𝒑

1

one training example

“fake” one

Fully Connected Neural Network Architecture

…

𝒙𝟏

𝒙𝟐

𝒙𝒑

1

one training example

“fake” one

𝑤11
(1)

𝑤12
(1)

𝑯(𝟏)

𝒉𝟏
(𝟏)

𝒉𝟐
(𝟏)

𝒉𝟑
(𝟏)

1

𝑓(𝑤11
1
𝑥1 +⋯+𝑤𝑝1

1
𝑥𝑝 + 𝑏1

(1)
)

𝑏1
(1)

𝑾(𝟏)

Fully Connected Neural Network Architecture

…

𝒙𝟏

𝒙𝟐

𝒙𝒑

1

one training example

“fake” one

𝑤11
(1)

𝑤12
(1)

𝑯(𝟏)

𝒉𝟏
(𝟏)

𝒉𝟐
(𝟏)

𝒉𝟑
(𝟏)

1
𝑏1
(1)

𝑯(𝟐)

𝒉𝟏
(𝟐)

𝒉𝟐
(𝟐)

1

𝑾(𝟏)

𝑤11
(2)

𝑤12
(2)

𝑏1
(2)

𝑾(𝟐)

g(𝑤11
2
ℎ1
(1)

+⋯+ 𝑏1
(2)
)

Fully Connected Neural Network Architecture

…

𝒙𝟏

𝒙𝟐

𝒙𝒑

1

one training example

“fake” one

𝑤11
(1)

𝑤12
(1)

𝑯(𝟏)

𝒉𝟏
(𝟏)

𝒉𝟐
(𝟏)

𝒉𝟑
(𝟏)

1
𝑏1
(1)

𝑯(𝟐)

𝒉𝟏
(𝟐)

𝒉𝟐
(𝟐)

1

𝑾(𝟏)

𝑤11
(2)

𝑤12
(2)

𝑏1
(2)

𝑾(𝟐)

𝑤1
(3)

𝑤2
(3)

𝑏
(3)

𝑾(𝟑)

ෝ𝒚

a(𝑤1
3
ℎ1
(2)

+ 𝑤2
3
ℎ2
(2)

+ 𝑏
(3)
)

• 𝐻(1) = 𝑎 𝑊(1)𝑋𝑇 + 𝐵(1)

• 𝐻(2) = 𝑎 𝑊(2)𝐻(1) + 𝐵(2)

• ො𝑦 = 𝑎 𝑊(3)𝐻(2) + 𝑏(3)

Layer Output

activation function 𝑝1 × 𝑝

𝑝1 = # of nodes in layer 1

𝑝 × 𝑛 𝑝1 × 𝑛

𝑝1 × 𝑛

