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Admin

* Lab 8 grades & feedback posted on Moodle

* End-of-semester survey (link on Piazza)



Outline for today

* Gaussian Mixture Models (GMMs)

* Kernel Density Estimation (KDE)

* Missing data

e Neural networks



Outline for today

* Gaussian Mixture Models (GMMs)



Problems with K-means

 Does not account for different cluster sizes,

variances, and shapes
* Does not allow points to belong to multiple clusters

* Not generative (cannot create a new data point)



Discriminative vs. Generative Algorithms

e Discriminative: finds a decision boundary
— Logistic regression, K-means

* Generative: estimates probability distributions
— Naive Bayes, Gaussian Mixture Models
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Gaussian Mixture Models (GMMs)

K prior over cluster sizes
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e Maximize likelihood:
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Gaussian Mixture Models (GMMs)

e |nitialization step: for each cluster
o Probability m, = 1/K (uniform prior)

o Mean i, = choose random point

o Variance a,f = sample variance of all points closest to each mean

e E-step: “soft” assignment
pUOp(Filk) _ meN (&l , o)
p(%;) ie Nl o)

wir = p(kl|x;) =

probability that x;
came from cluster k



Gaussian Mixture Models (GMMs)

* M-step: parameter update

N, = Z?zl Wi, (# of points assigned to cluster k)

N
o M=

1 «n S
O Hg _N_kzizlwikxi

N S 2
O O-Ig :Nik i=1 Wik (xi —Iik)

\

use updated mean



362

Density Estimation with Gaussian Mixture Models
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spherical

diag

Example of GMMs with different covariance
constraints on the Iris flower data

Train accuracy: 88.3

Test accuracy? 92.3

Train accuracy: 93.7

Test accuracy? 89.7
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https://scikit-learn.org/stable/auto _examples/mixture/plot gmm covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py



https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_covariances.html#sphx-glr-auto-examples-mixture-plot-gmm-covariances-py

Generative Process

» Sample cluster k using |, 5, ..., T ]

* Sample x from N (i, , o)



Outline for today

* Kernel Density Estimation (KDE)



KDE (Kernel Density Estimation)
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Figure 11.9 from MML textbook



KDE (Kernel Density Estimation)

SIREDRISS

given point

width:
smoothing

kernel: weighting function
parameter



Commonly used kernel functions

— Uniform
1.0F —— Triangle

— Epanechnikov
= Quartic

— Triweight

= Gaussian
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Density function
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Kernel density estimate (KDE) with different
bandwidths of a random sample of 100 points
from a standard normal distribution. Grey: true
density (standard normal). Red: KDE with
h=0.05. Black: KDE with h=0.337. Green: KDE
with h=2.



Outline for today

* Missing data



Types of missing data

* MCAR: Missing Completely At Random. Not
related to:

— Specific values
— Observed responses

* MAR: Missing At Random. Not related to:
— Specific values

* MNAR: Missing Not At Random

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Try to prevent the problem in the first place
— Careful study design, follow-up with participants, etc

 Omit rows with missing data (reduces n)

* Omit only when value is needed
— e.g. Naive Bayes, per-feature estimates

* Mean substitution (per feature)

Reference: “The prevention and handling of the missing data” Kang (2013)



Techniques for handling missing data

* Imputation
— Use similar examples to guess the missing values
— Can be done locally or globally

e Last observation carried forward
— Useful for time-series data

Reference: “The prevention and handling of the missing data” Kang (2013)



Outline for today

e Neural networks



Adapted from: “Know Your Meme”

MACHINE LEARNING

Vul(w, b a)=w Z(\ yWzd =

This implies that
m
w = Zn-,‘ym:r‘”)‘
i=1

As for the derivative with respect to b, we obtain

a

d‘,E(u bya)= Z(zgg‘ F=0.

i=1

If we take the definition of w in Equation (9) and plug that back intq
Lagrangian (Equation 8), and simplify, we get

m m m
1
L(w,b, o) = E &= E y Wy ey 0 (2T — b E ay®,
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But from Equation (10), the last term must be zero, so we obtain

(w, b,a)

other computer
scientists think | do

WhHEI
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>>> from sklearn import svm What |
>>> import tensorflow as tf RRGCEIKLE

What mathematicians think | do




Biological Inspiration for
Neural Networks
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Goal: learn from complicated inputs

° Y, | glasses?

Y, | smiling?

Y3 | identity?

parameters

input data

Image: Labeled Faces in the Wild (UMass)



ldea: transform data into lower dimension

Y, | glasses?

Y, | smiling?

identity?

parameters

input data




Multi-layer networks = “deep learning”

identity?

parameters
hidden

layer 2




History of Neural Networks

Perceptron can be interpreted as a simple
neural network

Misconceptions about the weaknesses of
perceptrons contributed to declining funding
for NN research

Difficulty of training multi-layer NNs
contributed to second setback

Mid 2000’s: breakthroughs in NN training
contribute to rise of “deep learning”



number of articles

Number of papers that mention
“deep learning” over time
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Big picture for today

* Neural networks can approximate any function!
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Big picture for today

Neural networks can approximate any function!

For our purposes in ML, we want to use them to
approximate a function from our inputs to our
outputs

We will train our network by asking it to minimize
the loss between its output and the true output

We will use SGD-like approaches to minimize loss



Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture



Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture
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Fully Connected Neural Network Architecture
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Layer Output

o H(l) — a(W(l)XT + B(l)) p; = # of nodes in layer 1

1 1 1

activation function p; Xp pXn p;Xn
\ J

I
pP1 Xn

e HO = o(W@OHD 4 p@)

+ y=a (W<3> H® 4 5(3))



