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Goals of Evaluation

* Think about what metrics are important for
the problem at hand

 Compare different methods or models on the
same problem

e Common set of tools that other
researchers/users can understand



Training and Testing
(high-level idea)

* Separate data into “train” and “test”
— n = num training examples
— m = num testing examples

* Fit (create) the model using training data
—e.g. sea _ice_1979-2012.csv

* Evaluate the model using testing data
—e.g.sea _ice _2013-2020.csv
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Precision and Recall

* Precision: of all the “flagged” examples, which
ones are actually relevant (i.e. positive)?

(Purity)

e Recall: of all the relevant results, which ones
did | actually return?

(Completeness)



Precision and Recall
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Precision and Recall
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ROC curve (Receiver Operating Characteristic)

\ https://en.wikipedia.org/wiki/Receiver operating characteristic
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic

ROC curve example: comparing methods

ROC Curve Stratified by Location
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. is a good overall metric
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02 Location = 0, AUC = 0.991164293155

Location = 2, AUC = 0.973799294174
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Example of a ROC curve
Chan, Perrone, Spence, Jenkins, Mathieson, Song



How to get a ROC curve for probabilistic methods?

* Usually we use 0.5 as a threshold for binary
classification

e Vary the threshold! (i.e. choose 0, 0.1, 0.2,...)

—P(y=1] x) >=0.2 => classify as 1 (positive)
—P(y=1| x)<0.2 => classify as 0 (negative)
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Outline for today

* Introduction to probability



Intro to Probability

e The probability of an event e has a number of epistemological interpretations

e Assuming we have data, we can count the number of times e occurs in the dataset to
estimate the probability of e, P(e).

count(e)

P(e) =

count(all events)

e If we put all events in a bag, shake it up, and choose one at random (called sampling),
how likely are we to get e?
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Intro to Probability
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e Suppose we flip a fair coin
e What is the probability of heads, P(e = H)?
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Intro to Probability
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e Suppose we flip a fair coin
e What is the probability of heads, P(e = H)?
e We have "all" of two possibilities,e € {H,T'}.

B B count(H)
o P(e — H) -~ count(H)+count(T)
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Intro to Probability

SIS

e Suppose we have a fair 6-sided die.

e What's the probability of getting "1"?
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Intro to Probability

SIS

e Suppose we have a fair 6-sided die.

e What's the probability of getting "1"?

count(s) 1 1

count(1) + count(2) + count(3) + - - - + count(6) T 1141414141 6
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