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Outline for today

SGD (Stochastic Gradient Descent)
Handout 6 (SGD solution example)
Analytic vs. SGD (pros and cons)

(if time) Polynomial regression



Outline for today

e SGD (Stochastic Gradient Descent)



Stochastic gradient descent example

Goal: minimize the function f(w)=w?-6w + 11

W<—W—<2\(f'(W)

step size
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Stochastic gradient descent example

Goal: minimize the function f(w)=w?-6w + 11




Stochastic Gradient Descent for
Linear Regression

Key Idea: take the derivative of one datapoint at a time and use that to update w




Stochastic Gradient Descent for
Linear Regression
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Linear Model and Cost Function J
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Linear Model and Cost Function J
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Gradient Descent: walking toward the minimum
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Cost Function (extra practice)

h,(x) =wx J(w,)
(assume w,=0 for this example)
S Ty =71
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J(0.5) = 3

[(05— 1)+ (1—2)*+ (1.5 —3)%*] = L.75



Choosing the step size alpha

« too small « too large

slow convergence increasing\value for J(w)

* may overshoot minimum
* may fail to converge (may even diverge)




SGD with our small dataset from
the handouts

Note: this is with the original order of the points
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Small example, iteration 1

iteration: 1, cost: 0.410000
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Small example, iteration 2

iteration: 2, cost: 0.350001
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iteration: 12, cost: 0.138047

Small example, iteration 12
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Small example, iteration 40

iteration: 40, cost: 0.014064
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Small example, iteration 100

iteration: 100, cost: 0.000105
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Outline for today

 Handout 6 (SGD solution example)



Handout 6

Linear Regression: SGD solution (find and work with a partner)

In linear regression, we seek to minimize the sum of squared errors between the actual response and
our prediction. We often call this RSS (residual sum of squares) or SSE (sum of squared errors). As an
objective function, we often call it J and include a % in front to make the derivatives work out nicely.
1 «— 2
J(w) = 2 Z (huw(x:) — w3)
i=1

For linear regression in general, one iteration of stochastic gradient descent includes the following updates
(usually with the data points shuffled):

for 1 =1,2,...,n:
w—w—alw-x; —y;)x;

We will begin with our same data from the previous two handouts: (z1,¥1) = (0,1) and (22, y2) = (1,0),
except we will reverse the order of the points to make the progress of gradient descent a bit clearer. So
in this case our matrix/vector formulation is:

L ek



Handout 6
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Outline for today

* Analytic vs. SGD (pros and cons)



Pros and Cons

Gradient Descent

requires multiple iterations
need to choose «

works well when p is large

can support online learning

(Analytic Solution)

Normal Equations

* non-iterative
* no need for «

* slowif pislarge
— matrix inversion is O(p?)



Linear Regression Runtime

T =4#iterations of SGD
* n=4#examples
e p =#features

1) What is the runtime of SGD?
2) What is the runtime of the analytic solution?

Challenge outside of class!



Outline for today

* (if time) Polynomial regression



Polynomial Regression

e Can be thought of as regular linear regression with a
change of basis

0 T l



Polynomial Regression
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